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1 Introduction

1.1 The Subject Of This Thesis

The issue of this work lies in the intersection of Linear Optimization and in the investi-
gation of the running time of algorithms. Before starting, we give some bibliographical
hints.: The historical statements and quotations about the origin and development
of linear optimization stem from [Dan02], [Sch98|, [Bor87] as well as from [Tod02].
The interpretation and formulation of different complexity measures is based on the
description in [ST04]. The development of linear optimization is due to many differ-
ent scientists. With their contributions to transportation problems during the fourties
Dantzig, Kantorovich, Koopmans und von Neumann have build the theoretical funda-
mentum for linear optimization. The invention of the Simplex Method by [Dan51] for
the solution of linear optimization problems has lead to a great success for the role of
optimization in practice. The fifties and sixties were a time of large and significant
improvements, generalizations and progress in applicability. One of the reasons for
this success was the empirical observation that the computation time for the Simplex
Method was rather low when practical problems had to be treated. But in their paper
[KM72] Klee und Minty managed the construction of a class of linear programs, where
the application of the Simplex Method using all standard pivot rules leads to a huge
number of pivot steps, which turned out to be exponential in the dimensions of the
problem instances. From the viewpoint of complexity theory this proved an extremely
poor Worst-Case Behaviour. Formally the worst-case-complexity is defined as follows:
Consider in general an algorithm A, a corresponding complexity measure C4, and the
set =, of all possible input systems for the algorithm C4 of size n. In addition let a
function f : N — R be given. Then we say that A has worst-case-complexity f(n)
with respect to Cy4, if for all n:

sup {Ca ()} = f(n). (1.1)

TEZ,

A graphical illustration of worst-case-complexity is given in 1.1.! For each possible
input from a two-dimensional input space the figure shows the C4-running time of
algorithm A. This produces such a collection of mountains as seen.

Figures 1.1 und 1.3 have been drawn by the author in the style of
the figures on the website of Daniel Spielman for Smoothed  Analysis:
http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis/framework.html.



1 Introduction

Laufzeit

Eingaberaum

Eingaberaum

Figure 1.1: Graphical illustration of the actual computation time

The worst-case-complexity of the algorithm can be seen by finding the highest point in
those running-time mountains. In the graphical interpretation the message of Klee and
Minty is that there are extreme high points in the mountains of the Simplex Method.

This observation stood in dramatic contrast to the experiences made until then. It
gave the motivation to a lot of investigations in form of an Average-Case-Analysis
from the end of the seventies to the end of the ninetees. We refer to the work of
Borgwardt [Bor87|, Adler, Karp und Shamir [AKS87], Haimovich [Hai83], Megiddo
[Meg84], Smale [Sma83] and Todd [Tod86]. In Average-Case-Analysis one tries to
calculate (theoretically) the expected value of the running time when it is assumed
that the input data are somehow distributed over the input space. Therefore it is
necessary to agree on a stochastic model for the input data. A formal defininiion
for that is as follows: For a famly p of distributions u, auf =,we state that A has
average-case-complexity g(n) under p with respect to Cy , if

E_[Ca(@)] = g(n) (12)

holds for all n. Here g(n) is a function from N to R¢. In our graphical illustration this
leads to a so-called running-time plane as shown in figure 1.2. The average running
time is just the height of the plane which is shown.
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Figure 1.2: Graphical illustration of the average computation time

We should mention that the choice of the distribution family x and the choice of specific
realization of the Simplex Method (the “variant” or “pivot rule”) have a tremendous
impact on the result. But in all investigated cases the average running time turned out
to be polynomial in the input dimensions. So these results were extremely lower and
‘better” than the worst-case observations of Klee and Minty. Hence we learn that those
problem instances , which had caused the great difficulties, possess a rather small weight
in the average-case distribution of problems. This confirmed the practical observations
made so far.

The two scientists did nor accept this as a final, satisfying confirmation of the good
behaviour in practice. So they developed a third concept for judging the quality of the
algorithm. They introduced the Smoothed Analysis and carried out such a calculation
for the Simplex Method 2001 in [STO1]. In essence this can be interpreted as a hybrid
between Average-Case and Worst-Case Anaysis. Its principle is as follows: First fix
an arbitrary input problem for the algorithm (the original problem). Then the data of
that problem will be slightly disturbed (or modified) according to a normal distribution.
So one has a so-called perturbation set of problems. After that one imagines that all
these perturbed problems are solved. And now one calculates the average running time
according to that imagination. This leads to the following formal definition:

An algorithm A has smoothed complexity h(n, o) with respect to C4, if

sup {E [Ca(x + 0g)]} = h(n,0) (1.3)

mEEn g
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for all n and ¢ > 0. Here h(n, o) is a function from N x R., to R>g and og is a vector
consisting of normally distributed random variables with mean value 0 and standard
deviation o. An illustration of that principle is given in figure 1.3.
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Figure 1.3: Graphical illustration of the smoothed computation time

The montains of smoothed running times result from the data in 1.1 by calculating the
average runtime on the corresponding perturbation set. These values are then plotted.
In total we define the smoothed running time of the algorithm as the height of the
highest point in those mountains. In their paper of 2004 [ST04] Spielman und Teng
have shown that the investigated variant of the Simplex Method features a polynomial
smoothed running time. Since here the running time does not depend on the input
dimensions, but also on the parameter o, polynomial is interpreted in a new way. In
Worst-Case and in Average Case we speak of polynomial behaviour of algorithm A,
if the functions f(n) resp. g(n) from the formal definitions in (1.1) und (1.2) are
bounded from above by polynomials f(n) resp. §(n). In extension of that principle the
algorithm A is said to possess polynomial smoothed running time, if A(n, o) is bounded
from above by a function iz(n, o), which is for its own polynomial in n and in % as well.
For simplification we call that complexity resp. running time the C4-complexity.

As already mentioned, Spielman und Teng proposed to use the Smoothed Analysis for
judgements about algorithms in augmentation to the measures used so far. We should
think about those aspects, which could be explained by that new approach. Let us for
the moment concentrate on one significant point, which is highlighted by Spielman and

10
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Figure 1.4: Graphical illustration of an alternative actual computation time distribution

Teng in [ST04]. For further details have a look at [ST09].

For an algorithm A featuring poynomial smoothed running time, we can conclude
that the critical problem instances leading to a high (exponential) running time are
isolated points. Then the mountains look like in figure 1.1. In particular the form of
1.4 will become impossible. Assuming that there is a plateau with extremal height,
and choosing an input in the center of that tableau, then small disturbances will lead
to problems with similar running time. All these difficult problems then have a large
weight in the perturbation set. As a consequence, the smoothed running time cannot
be significantly smaller than the mentioned height. If we observe polynomial smoothed
running time, then such plateaus cannot appear. In addition the real computation
will show numerical modifications and variations (e.g. as a result of computational
accuracy). So it is rather unlikely to hit some of those extremal problems. So we can
expect moderate running times.

Overall the smoothed running time is a measure for the real expected running time,
when we take little modifications into regard. In contrast, Average Case results are
based on averaging “all over the world”.

The invention of Smoothed Analysis has lead to the investigation of further algorithms
from mathematics and computer science. For instance one has investigated the numer-
ical stability of the Gaussian elimination procedure [SST06]. One has calculated the
smoothed running time of the k-Means-Algorithm [AMR11] and several properties of

11



1 Introduction

integer linear programs [RV07]. In addition one has investigated binary search trees
[MRO7] as well as condition numbers of matrices (vgl. [BA12] und [DST11]), which
occur in connection with linear programming.

The proof of exponential running time of the Simplex Method by Klee and Minty
has also lead to new algorithmic approaches for the solution of linear programming
problems. The first spectacular progress was the invention of the Ellipsoid Method
[Kha79], which is a (weakly) polynomial solution method. Weakly means that the
number of bits affects not only the effort of each single arithmetical operation, but also
the number of required arithmetical operations. Because of numerical instability this
algorithm was not useful for practice. But in 1984 Karmarkar [Kar84] invented another
weakly polynomial solution method, (as an initial point for Inner-Point-Methods). This
method was very successful and is today as competitive as the Simplex Method when
large problems shall be solved.

In addition to the invention of efficient algorithms for linear programming the theoret-
ical analysis of already known methods has great importance and interest. So it can
be mentioned that Borgwardt was rewarded the Lanchester Price 1982 for his papers
[Bor82b] and [Bor82al. In these papers he had shown (strong) polynomiality of the
expected running time of the Simplex Method by means of an Average-Case Analysis.
As already mentioned, Spielman and Teng have published in 2004 the paper [ST04] in-
troducing the Smoothed Analysis and showing that their Simplex-like solution method
has polynomial smoothed analysis complexity. So they were rewarded the Godel-Preis
for outstanding improvements in theoretical computer science. In addition they got
the Fulkerson-Price in 2009 in the field of Discrete Mathematics and D. Spielman was
finally rewarded the Nevanlinna-Preis for his contributions to smoothed analysis and
several other topics.

1.2 Structure And Content

In the last section we have got many interesting insights about the Simplex Method
and about its probabilistic analysis. Nevertheless there are a lot of unsettled questions
and of unexplained aspects, Some of those form the starting point for this thesis. After
this introduction five chapters will be presented .

In chapter 2 we list the fundamentals, which will be exploited in the course of our paper.
In addition to notation conventions we have summarized insights and basic formulas of
probability theory and further we explain in general how the Simplex Method works.
Here we focus on the shadow vertex algorithm, which is a special variant, specified by a
fixed special pivot rule. This variant has got many advantageous features, which were
very helpful for carrying out a probabilistic analysis. It is symptomatic that this is
so far the only variant for which a probabilistic analysis of the running time worked
successfully. We discuss several aspects, as the primal and dual interpretation of the
shadow vertex algorithm and we demonstrate how this algorithm is realized numerically.

12
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After that we present in chapter 3 the essential principles and logical steps in the
smoothed analysis of the running time for the Simplex Method done by Spielman and
Teng [ST04] and by Vershynin [Ver09]. Here we try to show the state of the art and by
the way we give a motivation for our investigations in chapters 4 and 5. The essentials
are described here concisely.

In their article [ST04], Spielman and Teng have published the first smoothed analysis
of the Simplex Method and there they presented the proof of polynomial smoothed
running time for the variant under consideration. Their work subdivides into two
parts. In the first part they derive an upper bound for the expected number of so-called
shadow vertices of a perturbed polyhedron. In part two they develop a special adjusted
form of the Simplex Method based on the shadow vertex algorithm. After that they
calculate its smoothed running time, making use of the upper bound from the first part.
With regard to the method constructed and analyzed in part two some issues should be
discussed. What they (finally) present and evaluate is a so called randomized algorithm.
That means that the real calculation varies in each application as a result of stochastic
decisions. Spielman and Teng used this randomization with the intention to keep the
upper bound in the smoothed analysis rather low. A corresponding “derandomized”
variant would also be evaluable, but for that procedure the upper bound of order
O(m®d>o=3Y) could not hold resp. could not be proved. In this formula logarithmic
factors are ignored. Despite the accepted randomization the upper bound still is of a
tremendous order even though it is polynomial. So the significance of that evaluation
is rather qualitative than quantitative. Further details will be given in the first section
of chapter 3. At this point we want to summarize: Spielman and Teng investigate a
randomized form of the Simplex Method. Hence the running time and the upper bound
for that is not only a result of the perturbations (which are the essence of smoothed
analysis) but also on decisions by chance about how the algorithm will proceed.

In augmentation to the result of Spielman and Teng an improved investigation was
published by Vershynin in [Ver06] and in [Ver09]. The essential aspects of that will be
discussed in detail in the second section of chapter 3. As seen in the work of Spielman
and Teng, also the work of Vershynin consists of two components. In the first part
he applies a refined geometrical study and he succeeds in obtaining a better upper
bound for the number of shadow vertices. In the second part he develops a method
for the solution of linear optimization problems which can be analyzed much simpler
than the approach of Spielman and Teng. For this reason Vershynin is able to derive
a significantly improved upper bound. But as we shall see in chapter 3, the method
applied by Vershynisn is obviously a randomized procedure. Here the randomization is
not chosen strategically, to keep the bounds low, but it is essential for the functioning.
So Vershynin gains his better upper bound by an improved shadow vertex analysis and
by the acceptance of a complete randomization. This upper bound for the smoothed
running time amounts to an order of O (max {d®(Inm)?, d°(Ind)*, d®c~*}) , which is
considerably lower than Spielman’s and Teng’s bound.

This concisely described state of the art with regard to the smoothed analysis of the Sim-

13



1 Introduction

plex Method is the motivation for the first part of this work. We are going to present a
deterministic form of the Simplex Method on the basis of the dimension-by-dimension
algorithm in chapter 5. After that we evaluate the smoothed running time of that
method. This amounts to an upper bound of (essential) order O (max {d%(Inm)?, d*c—*}).
In comparison with the upper bound derived by Vershynin, we observe a clear similar-
ity, which is disturbed only by the fact, that now d runs of the shadow-vertex-algorithm
must be carried out. So it can be shown that such a low upper bound can be achieved
without the necessity and the use of randomization. And we avoid any impact of ran-
domization on the bounds itself. Here the smoothed running time is affected only by
the way of perturbation of input data. Nevertheless we make use of the fundamental
estimation of the number of shadow vertices found by Vershynin. Since our method
works successively in dimensions k = 2, ..., d, and since Spielman, Teng and Vershynin
derived their fundamental results only for £ > 3 we are in need for a respective result for
d = 2. (This is essentially no conflict, but the mentioned authors had used coordinate
transformations which can be done only in dimension 3 or higher). So we derive and
prove an analogous result for d = 2 = k on our own in chapter 4 in detail. So this chap-
ter is a preparation and augmentation for the following total summing up in chapter 5 .
There we get the desired smoothed running time result for the dimension-by-dimension
algorithm.

The second part of this work is put in chapter 6 and it has strong connections with
the algorithmic investigation in chapter 5 . If one wants to study the expected running
time of the shadow-vertex-algorithm in the framework of a probabilistic analysis -
this is the case for smoothed analysis and average-case analysis as well - then the
expected number of visited shadow vertices under certain fixed stochastic conditions
plays the crucial role. For that reason one is limited to very specific algorithmic steps
- as the use of randomization by Spielman and Teng and Vershynins or e.g, the use
of the procedure in chapter 5. Failing to meet those limits would prohibit us from
using results from stochastic geometry (expected numbers of ....) for our proof of total
expected running time. As a consequence, our results would not hold for an algorithmic
behaviour (observed in practice) to do a simple Phase 1 by finding any vertex and then
immediately starting Phase 2 from that vertex. Here the problem is that this action
does not guarantee, that the start of Phase 2 is stochastically independent of the input
data. And then we cannot apply our stochastic results. In other words: a start at an
optimal vertex to an auxiliary direction w is feasible, if v was chosen independently
from the restrictions. But the delivery of any start vertex to Phase 2 generates strong
dependencies and this destroys any rigorous proof. This problem of the distinction
between practical (efficient?) behaviour and meeting the theoretical rules on the other
side and the comparison of the empirical behaviour in both cases form the question
investigated in this chapter: In case that we do not meet the independence rules and
conditions for the choice of the starting vertex for Phase 2 - are then the theoretically
obtained bounds for the running time of Phase 2 nevertheless valid (although we cannot
prove this) or is the behaviour then completely different?

To give an answer, we carry out an empirical Average-Case Analysis. For that purpose
we use the rotation symmetry model as the stochastic principle. We explain the basic

14



1.2 Structure And Content

statistical method of the investigation and after that we present the empirical results
numerically and graphically. These results confirm that under ignorance of the theoret-
ically required independency conditions the running time does not change significantly.
For that reason it becomes very plausible (although this cannot be proved theoretically)
that the results of the theoretical Average-Case-Analysis hold for the more efficient be-
haviour of practitioners, too. In this empirical investigation we have observed some
additional interesting effects. They are discussed in detail at the end of chapter 6 .

Summarizing: we remark that we augment the smoothed analysis of the Simplex
Method by an investigation of a deterministic variant. In addition we clarify empiri-
cally, that the results of the Average-Case-Behaviour hold even when the independency
conditions for the start vertex are not fulfilled. In chapter 7 we summarize and give
some final remarks.

15






2 Fundamentals

This chapter lists all the fundamentals, which we are going to use in this thesis.

2.1 Notation

Here are the details of the notation.

Scalars and sets

Scalars are denoted by the use of Greek lower case letters, e.g. A or . When it will be
necessary to deviate from that, we shall give a hint. For sets in R? we use Latin upper
case letters as X or Y. The boundary of a set X is denoted by dX. In case that we
want to emphasize the geometrical shape of a set GG, for instance a straight line, we use
caligraphic lettering and write G instead of GG. In case of a finite set A its number of
elements (cardinality) will be denoted by # (A).

For a point € R? and a set M C R? let & + M stand for the shifting of M by x.
le. x+ M ={x+y:yec M}

Vectors and matrices

Vectors are denoted by boldface lowercase letters, e.g. a. If not explained otherwise,
we regard any vector a as a column vector. The corresponding row vector is denoted
by a”. For a vector a € R? let a',...,a? be its d components . Let a,b € R? be two
vectors. Then we write for a possible comparison: @ > b < a* > b for alli=1,...,d.
In the following we sometimes augment a vector a by an additional component a (first
or last). For simplification we write in that case (a, @) resp. (a,a), but the meaning is
still that augmented column vector.

In contrast to vectors matrices are denoted by boldface capital letters. Let A =

(a,..., a,m)T € R™*¢ _ This matrix obviously consists of the row vectors af ..., al.
In addition consider an index set A = {A' ... A"} C {1,...,m}. Then A denotes
the matrix consisting of those row vectors whose indices belong to Al,... A" 1In
shortform
ak,
Ap = € RnXd.
al,

So we can regard A as a part of the matrix of A. Analogously we will apply that
convention to vectors .

17



2 Fundamentals

In addition E, will denote the unit matrix in R**¢.

Scalar product and norm
(-, -) denotes the standard scalar product. For two vectors &,y € R? we have (x,y) :=
% | ' -y That scalar product induces the Euclidean norm | - ||.

Distance and angle

For two vectors @,y € R? we write dist (x,y) for the distance between both vectors.
Consequently dist (z,y) = ||z — y||. In addition let M C RY. Then the distance
between  and M is defined as follows

dist (x, M) := inj& dist (x,y) .
ye

For M = () let dist (x, M) = co. In addition arc (x,y) denotes the angle between x
and y, i.e.

are (@,y) = arccos (122,

Analogously we define the angle between a point « and a set M:

arc(x, M) := injl\; arc(x,y)
yc

and arc (x, M) = oo, if M = 0.

Ball, sphere and Lebesguemeasure
By Q4(r) we shall denote the d-dimensional ball about the origin of radius r > 0, i.e.

Qu(r) :={z eR?: ||z| <r}.

Analogously wy(r) shall denote the sphere in R of radius r > 0, i.e. the volume of the
surface of Q4(r). So we have

wa(r) = {x eR: ||lz|| =7}.

This has dimension (d—1). For r = 1 let 4(r) and wy(r) simply be denoted by €, resp.
wg. Further let Ay (-) stand for the d-dimensional Lebesguemeasure. In our context
that means

Aa (Qu(r)) =17 —
d( d(r)) r T (% + 1)
as well as
-
A1 (wa(r)) = 2771 :
r(g)

18



2.1 Notation

Here T is the Gammafunction I' : (0,00) — R with

[e.9]

I(z) = /e_ttx_ldt.

0

Convex, affine, conical and linear hull
Consider m vectors xy, ..., . Based on that we introduce K H (x4, ..., x,,) for the
convex hull of the vectors x4, ..., x,,, ie.

KH (xy,...,x,) ={ Mz1+ ...+ 0@ - A, s A >0, M+ ...+ N\, =11,
Further we denote the convex hull of a point & € R? and a set M C R? as follows
KH (x,M)={ )X+ (1—-Ny:A€[0,1]] andy e M}.
Let AH (x,,...,x,,) stand for the affine hull
AH (x1,...,%p) ={ Mx1+...+ ATy - M1+ ...+ A =11},
KK (x,...,x,,) for the conical hull
KK (x1,...,xy) ={ Mxi1+ ...+ \p@p - A, ;A >0}
und LH (x4, ...,x,,) for the linear hull

LH(Q,'l,...,J,'m) I:{)\1$1+...+)\m$m . Al,...,AmGR}.

Random variable and notation from probability theory

For the notion of random variables and of random vectors we make use of two different
notations.In this first chapter we use capital letters as Z for random variables and Z for
random vectors. In the course of the thesis sometimes data vectors a will appear, which
are affected by some stochastic influence. In that context, we shall (for simplification)
also use a as a random vector. In each context the meaning will be clarified.

For the determination of more notation let a random variable X and two random
events A, B be available. Then E [X] stands for the expected value of X and P [A4] is
the probability that the event A will occur. If P[B] > 0, then P[A| B] denotes the
conditional probability of A under the condition (or given) B. Hence

P[A A B|

P[A|B] := 1B

Furthermore let 1 [A] be the indicator function for the event A,i.e.

1[4] = 1, if the event A has occurred
"] 0, else.
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For a random variable X and an event A with P[A] > 0 let E[X | A] stand for the
conditional expected value of X, given A. In detail:

E[X -1[4]]
E[X|A4] = ————.
X] A= 25
Logarithm
In(-) denotes the natural logarithm and lg(-) is the logarithm to basis 2.

2.2 Probability Theory

This section contains results from stochastics, which wil be exploited in the following.
Most of them can be found in textbooks as [Geo04] or [Kle08]. More special results are
proven or we have inserted a corresponding reference.

2.2.1 Transformation Of Density Functions

Let us consider density functions. Compare section 1.1.2 and Proposition 9.1 in [Geo04].

Lemma 2.2.1 (Transformation of density functions).

Let X C R? be open and let P be a probability measure on (X,B%) (B4 denotes
the Borel o-algebra on X ) with density function f. Let further Y C R? be open and
® : X — Y be a diffeomorhism, i.e. a continously differentiable bijection with Jacobi-
determinant det (;5® (x)) # 0 for all @ € X. Then the distribution P o ®~ of ® on
Y has the density function

forally €Y.

2.2.2 The Gaussian or Normal Distribution

This section deals with the normal distribution (Gaussian distribution). It is extremely
important for the investigations in connection with Smoothed Analysis, since there one
has fixed the principle that the deviations follow normally distributed deviations from
the original data. For further details compare [Geo04] and [Kle08].

A random variable Z is normally distributed with expectation value p and variance
02 >0, ie. Z~N(u,0?),if Z possesses the density function

1 (z=w)?
Z) = -6 2072
fZ( ) \2mo
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2.2 Probability Theory

That principle can be transferred to random vectors. Let a positive definite and sym-
metrical matrix M € R as well as a vector u € R? be given. Then we call a
random vector Z = (Zy,..., Zd)T d-dimensional normally distributed with center p
and covariance matrix M, if Z has the density function

fz(z) = 1 e 3z M (z—p)
(2m)" det (M)

for z € R . Shortly we write Z ~ Ny (pu, M) and we speak of a multivariate and
multi-dimensional normal distribution.

In context with the multivariate normal distribution the following special case will be
interesting for us. Let pu € RY as before and for the covariance matrixi let M = o2E,
with o > 0 and unit matrix Ey. If Z ~ Ny (u,0?E,), then Z has the density function

d 2
fz(z):( ! )'6_%

210

for z € R In that case Z will be called a normally distributed random vector with
center pu = (,ul, e ,,ud)T and standard deviation o. Further the components Z; of Z
are independently normally distributed random variables with expectation value u‘ and
standard deviation o. So we have Z; ~ N (u%,0?) for all i = 1,...,d. If in particular
o =1, then we call Z a multivariate (standard-)normally distributed random vector in
dimension d. This definition of a normally distributed random vector can be analogously
transferred on the construction of a normally distributed random matrix

An important feature of the normal distribution for our purpose comes from the affine
transformation of normally distributed random vectors. Here the question is, how large
is the impact of such a transformation on the distribution of the random vector. An
answer is given in the following Lemma.

Lemma 2.2.2 (Affine transformation of multivariate normal distributions).

Let Z be a normally distributed random vector in R? about p with covariance matriz
M, ie. Z ~ Ny(p, M). In addition let for k < d a real (kxd)-Matriz P of full rank as
well as an vector p € R* be given. Then the k-dimensional random vector W = PZ +p
follows a normal distribution with center Py + p and covariance matric PMPT as
well. Hence

W ~ N, (Pp+p, PMP").
Proof. Compare [Geo04, Satz 9.5]. O
In the style of [ST04, Lemma 2.15] we formulate the following result, which gives a

description of the smoothness of the normal distribution. This will be useful in the
following.
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Lemma 2.2.3 (Smoothness of the normal distribution).

Given a density function [ of a one-dimensional normal distribution with standard
deviation o and expectation value . Furthermore let 6,m1 > 0 and let two values zy, 2o
be available with |z —p| <6 and |z — 22| <n. Then

fz) o
f(zg) <e .

Proof. The density function in explicit form is

1 (z—w)?
zZ) = -6 202
f(2) o

For further considerations we set wy := 2; — p and wy := 25 — p. Then

|wa | = |20 — ]
=|z—z1+21 —
= |2 — 21 +w|

| 22 — 21| + | w1 |

n+|wr|

(VARVAN

as well as
jwi | =z —p| <6

So we can conclude

‘s
(ol V]
‘s
NS

=€ 22 .20

_ (n+]wy )?
< e 202 . 202

‘ g
§

- w242 wy [nt+n?
= e 22 .¢ 202

‘s
1o

2| wy |n+n?
= e 20

286n+n2
< e 202

This proves the proposition of the Lemma. O
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2.2 Probability Theory

2.2.3 Chi-Quadrat-Distribution

Closely connected with the normal distribution is the Chi-Square-Distribution, which is
defined on the basis of [FKPTO07]. After that we present some fundamenal properties.

Z1, ..., 4, may be independently and identically normally distributed random variables.
So Z; ~ N (0,1) fir : = 1,...,n. On that basis we define

W= (Z)+...+ (Z,)>
Then we call their distribution Chi-Square-Distribution with n degrees of freedom

(shortly: x? (n)-distribution). W is x? (n)-distributed (shortly: W ~ x? (n)).

The following relationship is useful:For U = (Uy, ..., Ud)T with U ~ N, (0, Ey) we
consider :

|U|1> = (U)? + ...+ (Uy)>

From U; ~ N (0,1) fori = 1,...,d we derive |U||* ~ x*(d). So it holds: The squared
norm of a normally distributed random vector U ~ Ny (0, E,) follows a Ch-Square-
distribution with d degrees of freedom.

In the following we focus on the special case d = 2, since we are obligated to do some
smoothed analysis for that case on our own without having predecessor results as for
d> 3.

Lemma 2.2.4.
Let U be a two dimensional normally distributed vector with U ~ N3 (0, Es). Then

V]

€

PlIUIP =] =P[|U]| > ==
for all e > 0. Here [|[U||* ~ x*(2).

u2+u2
Proof. As known U possesses the density function f (u) = 5= - e~ 7. Besides we see
that for each w € R? with ||w]|| = € the density attains the value
1 e
w _ — . 6_7
flw) = -
The set of all points y with [|y|| = € forms a circle with radius € about the origin. It

has circumference 2me. So we can calculate the radial density function

~ 1 2 &2
f(€) :27T€2— e 2 =€ 2
and the probability will be
i ~ = 7,‘2 1”2 oo 62
PI|U| > d = /f (r) dr — /7" =[] =T
Since obviously P[||U||? > €] = P[||U|| > €] this concludes the proof. O
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From that we may draw the following consequences.

Corollary 2.2.5.

Ler U be a twodimensional normally distributed random vector with center in the origin

and standard deviation o > 0, i.e. U ~ N5 (0,0°Ey). Then

)

PU| 2 eo] =€ =
for all e > 0.

Proof. Set U = cW with W ~ N3 (0, E3). Then

[V

€

PIUIl 2 eo] = PlloW]| 2 co] = Plo|[W][ 2 co] = P[[W]| 2 ] = ™=
The equation () holds because of 0 > 0 and the last equation is a consequence
Lemma 2.2.4. This concludes the proof.

Corollary 2.2.6.
Let U ~ N3 (p, 02 Es) with ||p|] < 1. Then

V]

€

PlU|| > 1+e0] <e =.

Proof. Set U = p+ W mit W ~ N5 (0,0%E,). Hence

PU| = 1 + o]
= Plllp+ W] 21+ e
< Plllpl + W]l =1+ ed] (da [l + W] < Il + W]
= PIWIl =1 - [|p + eq]
< P[[W] = eo] (da 1 —|[p]| = 0)
— 7. (Corollary 2.2.5)

which shows the proposition.

of

O

As a final step we extend our considerations to a set of m normally distributed random

variables Uy, ...,U,,. In that context we can obtain the following result..
Lemma 2.2.7.
Let m (m > 2) independently and normally distributed random vectors Uy, . .., U,, with

U; ~ N (pu;,0*E5) be given. For the centers we assume that ||| < 1 for all i and

. Then it holds:

for the standard deviation we may have o < i
n(m

1
..... m
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2.3 The Simplex Method

Proof. First consider

ey

= PIT1 22 V...V (U] > 2)

m

<3 P22
1=1
<m- max (U] > 2).

It will suffice to show that for arbitrary j € {1,...,m} :
PU,I = 2] <m™.

For ensuring that estimation we apply Corollary 2.2.6. Therefore we choose ¢ =
24/In (m) and we remember that o < —2

W So we obtain:

PIIU;] = 2]
<P [||Uj|| >1+24/In (m)a] (since 24/In(m)o < 1)

(2 ln('m))2
<e Tz (Corollary2.2.6)

=m °.

This bounds the probability. O

2.3 The Simplex Method

In this section we explain the basic functionality of the Simplex Method and we discuss
the numerical realization by means of the so-called Tableau-Method. Further informa-
tion can be got from [Bor01].

2.3.1 The Essential Functionality

For preparing the content of this thesis we introduce the principle of the Simplex
Method for the solution of Linear Optimization Problems of the following kind:

maximize (v, x)
st. (a;, ) <b
(LP)

(A, ) <"
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2 Fundamentals

by finding an « with ai,...,a,,v € R? and b = (bl,...,bm)T € R™. The feasi-
ble region, which is polyhedron, is denoted by X . For simplification we set A :=
(ay,...,a,)". In the following problems of that kind will be denoted by (LP).

The concept of the Simplex Method exploits the following two insights from polyhedral
theory and from the theory of linear optimization problems.

Conclusion 2.3.1.

Let the feasible region X of (LP) be nonempty and it may have at least one vertex.
Then the set X,y of optimal points of (LP) is nonempty, so it contains at least one
vertex of X.

Conclusion 2.3.2.
The feasible region X of (LP) may be nonempty and it may have one vertex x at least.
Then at x the following cases are possible:

1. The vertex x is optimal for (LP).

2. There is an adjacent vertex to x called y with greater objective value, i.e. (v,y) >
(v, ).

3. There is an unbounded edge originating from x improving the objective. In that
case (LP) has no optimal point. The objective is unbounded from above.

We explain the functionality of the Simplex Method. Assume that we have a vertex
x of the feasible region X. Then either we can stop the treatment at x (in case of
optimality or if unboundedness of the objective becomes apparent) or there is an edge
from @ to an adjacent vertex y featuring a greater objective value. Since the number
of vertices of X is finite (the maximal number can be calculated) such a procedure of

edge-walks terminates after finitely many steps. This procedure just described is called
Phase 2 of the Simplex Method.

In order to start this Phase 2 procedure, we are in need of a start vertex x of X. For
this purpose we apply a so-called Phase 1. This procedure shall clarify whether X is
nonempty at all. If Yes, then this procedure is able to determine one of the vertices of
X. And that vertex can then be used for the start of Phase 2. The essential way how
this procedure works is similar to that of Phase 2.

So the principal course of action is as follows

Phase 1 Find a vertex gy of X or assure, that the feasible region is empty. In the
latter case we can abort the procedure, because a solution to the problem cannot
exist.

Phase 2 Starting from x, construct a sequence xg, 1, ..., s of successively adjacent
vertices with the following two properties: For sequential vertices x; and oy, we
have (v, x) < (v, @4+1). In addition x; either is an optimal point or it becomes
obvious at x; that the problem is unsolvable because of unboundedness of the
objective.
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2.3 The Simplex Method

Besides that classical partition into a first and a second Phase we are going to study
differing partitions, which enable us to obtain improving results.

Remark 2.3.3.

Potentially there are several vertices adjacent to x; and exhibiting a better objective
value than x;,. All these could take the role of the successor vertex xp,;. To make
a deterministic decision how to continue and to select a unique successor vertex, one
has to apply a chosen pivot rule. The choice of such a pivot rule determines what we
call a (special) variant of the Simplex Method. Such a special variant, the so-called
shadow-vertex algorithm, is located in the focus in the theory of probabilistic analysis
of the running time of the Simplex Method. And this includes all the attempts to carry
out a smoothed analysis.

2.3.2 The Tableau Method

For the clear and understandable execution of the Simplex Method it is very helpful to
organize the relevant data in Tableau-form . Some aspects of that Tableau-form and
of the Tableau-method will be presented and discussed in this subsection. A complete
demonstration and explanation can be found in [Bor01, S. 83-110], where also the
following excerpts are from.

For our problem the Tableau has the following structure.

a; a] a, a,, —e;q —e; —ey v

k k k k k k k

a/Ak al a] O am ,71 /yl '7d 1%
a’AS :a’T O[i .« o a; e ]_ P afn /yf IYZ /yj ]/3
d d d d d d d

a;Ad Ql a] O am ﬂ)/l f}/l ﬂ)/d 1
ﬁl /3_] ﬁm .I'l 7t .fL'd _Q

Tableau 2.1: General Tableau-Structure in componentwise illustration

There are in total m+d+ 1 columns, where the first m represent the regular restrictions
(ap,z) < b, ... (@m,x) < b™. The next d columns are dedicated to the additional
(and sometimes artificial) restrictions (—ej, ) < 0,...,(—e4,x) < 0 and the last
column corresponds to the hypothetical restriction (v, x) < 0.

The first d of the (d+1) rows of the Tableau are reserved for the coordinate-representations
of the vectors aq,...,a,,—ey,...,—e; and v with respect to a basis consisting of d
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2 Fundamentals

restriction vectors aa,...,axs .} On the left side or boundary of the Tableau it is
specified which original vectors take (at this moment) the role of the according basis
vectors. The index set A = {Al, ce Ad} C {1,...,m} is according to its functional-
ity in the Simplex Method not an arbitrary set. Instead it is chosen in a way that the
corresponding basic solution xa = Agle is a vertex of the feasible region X.

In the lowermost row of the Tableau one finds the differences between the right-hand
sides of the restrictions and the present value of the restriction functions at the vertex
under consideration @. For the first m columns according to this it holds that 57 = & —

(aj, x). For the restrictions corresponding to —ey, ..., —e; we obtain ' = 0— (—e;, ).
There - as shown in the Tableau above - one finds just the coordinates of the present
vertex. The entry in the column to v is calculated as —Q = 0 — (v, x) = —(v, x). Here

() denotes the value of the objective function at the present vertex. These observations
can be formulated in concise form by using a formulation in terms of matrices under
use of the index set A .

a S a, | —e, .- e, v
an
(A43)" —(43)" (A"
a
(b— AAL'bA)" (Ax'ba)" —vTAL'ba

Tableau 2.2: General Tableau-representation in matrix-notation

Now we are going to discuss the three essential operations handling the Tableau data.
Without proving this, we state the following: The choice of the edge emanating from
x, used for the iteration to the next vertex, structurally determines the pivot row.
Potential pivot rows are those aax for which the entry * in the v-column is strictly
negative.

Detection of optimality

If o', ..., v? > 0 for all entries in the v-column of the Tableau, then we have optimality
at the present vertex x. This is a direct consequence of the polar cone theorem.

Theorem 2.3.4 (polar cone theorem).
Let x a feasible point for (LP) such that A = by and Ay < by for IUJ ={1,...,m}.
Then x is an optimal solution for (LP) if and only if

veKK (a; :1€1)

'We assume that the vectors @a1,...,aaq are linearly independent..
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Detection of Unboundedness:

Assume that we have already chosen the pivot row aax. Then we identify unbound-
edness of the objective by observing that for the corresponding entries in the first m

columns of the Tableau of, ..., a* > 0 holds .

Execution of a pivot step:

Let again axx be the pivot row already chosen. We assume that the criterion for
unboundedness is not valid . Now one has to determine an index j such that

j !
ﬁk:min{ﬁ—k : af<0,l§éA}.
—as —a

This index determines in the pivot row with index AF just the pivot element Czj? It s
framed in the following Tableau.

a; a; a, a, | —e; —e; —ey | v

1 1 1 1 1 1 1

aAl al .. a] o« .. O o« .. am ’71 o« .. ,yz .. IYd V

k k k k k k k

Ak ay |y 0 Q| N i Vd v
aps =a, | of - a1 -oag | 9 v: oF Ve
d d d d d d d

a/Ad al “ .. aj o« .. O o« .. am /yl o« .. ,yz “ .. /yd V
Bl 6] Bm :L‘l :L‘i l‘d _Q

Tableau 2.3: Tableau with pivot element for the execution of a pivot step

Now the Tableau for the successor vertex @’ can be calculated by application of the
GauB3-Algorithmus to the available Tableau such that the entry of the pivot element
gets the value 1 and all the remaining entries of that column get the value 0.

At a later point we shall demonstrate how the shadow vertex algorithm works. There-
fore it seems to be helpful to remark:

Remark 2.3.5 (Adding a new restriction).
With little effort it is possible to insert and to integrate a new resp. additional restric-
tion for our problem (a1, x) < ™! in the Tableau. For that it is only necessary to
calculate the values

_I\T
(AAI) Amt1

as well as

bm+1 - <a’m+1> :L')
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and we have to record these values in an additional column of the Tableau. The
necessary inverse matrix as well as the actual point can be seen directly in the Tableau
2.2.

2.3.3 Fundamental Considerations On The Computation Time

On the basis of the functionality of the Simplex Method as presented in the two previous
sections 2.3.1 and 2.3.2 we want to build a connection to the argumentation in chapter
1. There we had presented the essential different views on the complexity in general
form. For preparation of the content of this work it makes sense to state some points
more precisely.

For our complexity criterion C4 in the respective form A of the Simplex Method we
use always the number of pivot steps carried out. This makes sense, since it essentially
determines the arithmetical effort. We shall use the criteria with respect to the solution
process for

maximize (v, x)
st. (ay,x) <

(@, x) < b™.

The problem-defining data can be stored in a vector of dimension n := m(d + 1) + d.
But for the impact on the number of pivot steps the two single and separate figures m
and d have the greatest relevance. Consequently the functions f(n), g(n) and h(n, o)
for the different complexity types from the introduction chapter should — in our case —
be replaced by functions of the form f(m,d), g(m,d) and h(m,d, o) .

The following sections deal with the shadow-vertex-algorithm, a special variant of the
Simplex Algorithm .

2.4 The Shadow Vertex Algorithm

The content of this section comes from [Bor87] and everything is proved there in detail.
Therefore we concentrate on the presentation of the results and we do without deriving
them. Also the kind of presentation is taken from that source.

30



2.4 The Shadow Vertex Algorithm

2.4.1 The Primal Shadow Vertex Algorithm

We shall exhibit the functionality of the shadow vertex algorithm for the solution of
problems like:?

maximize (v, x)

s.t. (ar,xz) <1 (EP)

(@, x) < 1.

Here v, x,a,...,a, € R?and m > d. In the course of this work we shall call problems
in the above mentioned form unit problems and abbreviate it by (EP). A restriction
from the system of inequalities will consequently be called unit restriction and X stands
for the feasible region.

In the following let us concentrate on Phase 2. Assume that we have a vertex xy of
X, which is optimal with respect to the objective direction w € R?. Furthermore we
assume that:

Assumption 2.4.1 (Condition of nondegeneracy).
FEach d-element subset of {a, ..., an,w,v} shall be linearly independent and each sub-
set of (d+ 1) elements from {aq,...,a,} shall be in general position..

Under the stochastic models used in our investigations we can presume the validity of
that condition of nondegeneracy in this work. In that case each vertex of X is the
unique solution x of a system of equations

<CLA1,CC> = 1,...,<G,Ad,:13> =1
with A = {Al, . .,Ad}. In addition this is a feasible point, i.e. (a;,x) < 1 for all
j=1...,m.

Now we can present the principle of the shadow vertex pivot-rule. Consider the orthog-
onal projection I' (X)) of the polyhedron X on the two-dimensional plane LH (u,v).
Then the shadow vertices are just those vertices of X, whose images I' (x) are vertices
of the polygon I'' (X). We can make the following statement.

Lemma 2.4.2.
Let xa be a vertex of X. Then nondegeneracy makes the following three conditions
equivalent.

(a) xa is a shadow vertex.

(b) T' (xa) € O (X) (boundary of I' (X))

2In principle the shadow vertex algorithm can be used to solve arbitrary linear optimization problems.
But an investigation on the basis of the dual perspective, as exploited later, is possible only for
this type of problem .
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(c) There is a vector w € LH (u,v)\ {0}, such that (w,xa) = ma;(((w,a:}.
e

In consequence of that equivalence we come to the following algorithmic principle. We
take the vector u and rotate it in direction of v. Simultaneously we determine the
optimal solutions on X for all intermediate directions w. These are the directions
traversed during our rotation. The Lemma declares that by the way we create a se-
quence of vertices, that are all shadow vertices. Furthermore the vertices I' (z;) and
[ (x;11) in ' (X) are adjacent. Of course such a sequence can also be constructed, if in
direction v unboundedness is valid. In that case x, is optimal with respect to the last
w € KK (u,v), for which boundedness was true. In this case our vertex is adjacent
to an unbounded edge not improving this last w-objective, but strictly improving the
v-objective.

At this point we do not yet know whether the sequence x, . .., s describes a Simplex-
path. For an answer we should clarify two questions.

1. Is it true that two successive vertices x; and x;,, are adjacent in any case?

2. Will the move from x; to x;, strictly increase the objective value?

An answer is given in the following Lemma.

Lemma 2.4.3.

Let x; and x;y1 be vertices. If T (x;) and I' (x;41) in ['(X) are adjacent, then this
applies to x; and x; 1 in X as well .

Lemma 2.4.4.

Let g, x1, ..., x5 be the optimal vertices with respect to the objective directions

wo, W1, ..., ws, where wy = w and arc(w;,v) > arc(w;;1,v) fori =0,...,s—1.
Then:

(v, Tir1) > (v, x;)

furi=0,...,s —1.
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2.4 The Shadow Vertex Algorithm

Figure 2.1: Graphical illustration of the functionality of the primal shadow-vertex-
algorithm

So the method described before does indeed construct a Simplex Path. In figure 2.1
one finds a graphical illustration of the functionality of the shadow vertex algorithm.
For simplification of the notation in the figure we set &; := I' (x;). First we consider the
orthogonal projection of X on the plane LH (u,v). This delivers the polygon drawn
in grey. We start from the vertex &, von I' (X'). This vertex is optimal with respect to
the objective direction u. Now we rotate the vector w in direction v. By the way we
obtain a chain of edges @, . .., &g, where &4 is optimal with respect to v. This chain of
edges corresponds to the Simplex Path x, ..., x¢ on the original originalen polyhedron
X. The start vertex axq is optimal with respect to the auxiliary objective direction w
and xg is the optimal solution for the original problem.
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2.4.2 The Dual Shadow Vertex Algorithm

In this section we discuss the shadow vertex algorithm under the so called dual perspec-
tive. This viewpoint grants the advantage that all interesting events can be expressed
directly by means of the vectors aq,...,a,,,w, v . This simplifies the considerations,
since these are the random variables dominating the game. Now we deal with the
polyhedron Y, which is dual to X, and is defined as follows:

Vi={yeR: (z,y) <lforall ze€ X }.
We can show that this polyhedron has the following form:

Lemma 2.4.5.
Y:{yERd : <:13,y>glforalla:EX}:KH(O,al,...,a,m).

As before A := {Al, . .,Ad} C {1,...,m} shall be a d-element index set. Since the
condition of nondegeneracy is valid ( 2.4.1), we have an obvious 1-to-1-relation between
A and the solution x of the system of equations

(apt,z) =1,...,(aps,x) = 1.

On the other side there is also a 1-to-1-relation between A and the (d — 1)-dimensional
simplex K H (a1, ...,axq). Hence in total we have the 1-to-1-relation:

A «— A «— KH (ap1,...,ap:) = 2 (A). (2.1)

At this point it should be clarified, how the property of having a vertex xa of X affects
¥ (A) and vice versa. An answer is given in the following Lemma.

Lemma 2.4.6.
xa is a vertex of X if and only ¥ (A) is a facet 7 of Y .

In connection with the 1-to-1-relation (2.1) we recognize a unique correspondence be-
tween the vertices of the primal polyhedron X and the facets of the dual polytope Y
not containing the origin.

A further significant point is to clarify, how the property of being a shadow vertex can
be recognized in the dual perspective. An answer is givin in the following Lemma.

Lemma 2.4.7.
Let & be a vertex of X and let us have a w € R? with w # 0 . Then xa is optimal
on X with respect to the objective w if and only if

RYfwNI(A) #£ 0.

Here Rtw :={ w : A >0}.

3What we mean is a (d — 1)-dimensional face .
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Hence a vertex xa is a shadow vertex if and only if the corresponding facet ¥ (A) of
the polyhedron Y is intersected by the plane LH (u,v). Besides we want to call the
facet ¥ (A) start-facet, if it is intersected by the ray RTw . Analogously ¥ (A) will be
called optimal facet, if it is intersected by the ray RTv .

In contrast to the primal perspective, where we are interested in a sequence of vertices,
in the dual perspective our interest turns to a sequence of facets. But common to both
perspectives is the interest in the length of both sequences. The following Lemma gives
further important information.

Lemma 2.4.8.

The facets of Y intersected by KK (u,v) C LH (u,v) can be ordered uniquely in a
sequence X (Ag), ..., 25 (Ag) such that

1. AZ%A] fO’f’Z.#j,

2. A; und A;yq differ in exactly one index

3. arc(z;,v) > arc(z;41,v) for each pair (z;, z;11) with z; € X (A;) N LH (u,v)
and Ziy1 € by (Ai+1) NLH (’U,, ’U).

Now we come to the last result, describing the relation between primal and dual per-
spective.

Lemma 2.4.9.

There is a unique relation between the constructed sequence of facets of Y and a sequence
Tpg,---, XA, Of shadow vertices of X, which stands for a valid Simplex-Path.

Finally in figure 2.2 there is a graphical illustration for the dual interpretation of the
shadow vertex algorithm on the polytope Y. For simplification of the notation we set
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2 Fundamentals

Figure 2.2: Graphical illustration of the dual interpretation of the shadow-vertex-
algorithm

Fy is a facet for starting the algorithm. Emanating from there we rotate the vector u in
direction v constructing the sequence Fy, F1, ..., Fy of successively intersected facets.
Finally Fjy is the desired optimal facet. Here Fj, ..., Fg corresponds with a sequence
X, . .., xg of shadow vertices, which are traversed (in the primal perspective) on the
polyhedron X.

2.4.3 Numerical Realization Of The Shadow Vertex Algorithm

In this subsection we discuss the numerical realization of the shadow vertex algorithm
in Tableau-form. In particular we have to focus on the determination of the pivot
element for the upcoming pivot step.

We should remark that the rotation of v in direction v is realized in the shadow vertex
algorithm in the following way: Consider starting from g = 0 the objective directions

u+ p - v fir p— oo.

For demonstrating one pivot step assume that we have the vertex x, of the primal
polyhedron X and the corresponding Tableau at hand.
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2.4 The Shadow Vertex Algorithm

a - Q,|—e -+ —eyg v u
1 1 1 1 1 1
A I T L N v £
d d d d d d
apd | oy -0 Qo | 1 0 g v £
1 m 1 d
B e 6 xq e xq _Q’U _Qu

Tableau 2.4: Tableau for execution of the shadow vertex algorithm

The additional u-column results from the fact, that we need an auxiliary objective
direction u to realize the shadow vertex algorithm. Moreover let @, be optimal with
respect to the direction q := w + i - v such that i > 0. Here we have

fvh+&8>0

for all k = 1,...,d. If in addition ', ..., v? > 0 for all entries of the v-columns, then
we can stop. In that case we would have optimality at &, also for the objective direction
v.

If alternatively @, is not optimal, then there are entries ¥ < 0. We shall see, that
among these negative entries in the v-column the pivot row has to be chosen according
to a certain rule. To realize that principle, we increase the value of 1 beginning from
it. By the way we rotate the vector w + p - v more and more in direction of v. For
sufficiently great values of ;1 the vector w + - v will leave the polar cone of x, and x,
will lose its optimality. Against this background we distinguish between four possible
sign-combinations for the pairs (1%, £¥):

1. ¥ >0, &8 <0
This case does not cause problems, since p - ¥ 4 £¥ remains positive for all > fi.
2. V<0, <0
This combination cannot appear because of ji - v* + &% > 0 with 1 > 0.
3.8 >0,6>0
This combination is not problematic in the same way as the case 1 was not.
4. v <0, &8 >0

That combination is the most interesting, because for p; = —E—Z the term
g, - vF + €F attains the value 0 and it gets negative for further increasing ju.

In order to guarantee that w + p - v for ;o > i remains in the polar cone of x, it is

necessary that
k J
p < min (—5—) __g =: 1/ (2.2)

vk <0 vk Vi

4A choice of i = 0 would lead us to the start vertex oy of the Simplex Path.
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will be satisfied. For u = p’ the hybrid direction w + - v is just located in the face
KK (a,N, e, A1, AAGFL, .. ,a,Ad)

of the polar cone KK (aa,...,axs) to x, For iteratioon to the next vertex the
restriction vector aa; consequently has to be replaced. Hence the row belonging to aa;
must be the pivot row.

Now we can use the principle of section 2.3.2 for determining the pivot column. And so
we obtain the pivot element needed to proceed to the next vertex during the iteration.

Remark 2.4.10.

The arithmetic procedure as it is described here in form of the shadow vertex algorithm
corresponds to the procedure in the parametric Simplex-Variant [GS55] introduced by
Gass und Saaty. This was given exclusively in arithmetical form without any geometri-
cal interpretation. The geometrical interpretation as of following the shadow boundary
stems from Borgwardt. Also the algorithmic interpretation under the dual perspective
(which has been presented above) is due to Borgwardt’s thesis [Bor77]. This mathe-
matical tool turns out to be essential for all stochastically motivated investigations of
the running time of the Simplex Method carried out successfully up to now. And no
other variant of the Simplex Method has permitted investigations which are likewise
successful.
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3 Hitherto Existing Smoothed
Analysis Approaches For The
Simplex Method

In this chapter we present the fundamental principles from the hitherto existing inves-
tigations of smoothed analysis of the Simplex Method done by Spielman und Teng and
Vershynin. Presenting the algorithmic procedures we build a bridge to the master’s
thesis [Sch12], where the treatment of Phase 1 in both approaches is studied in detail.
We want to emphasize that this chapter is only a sketch of both works. Its main pur-
pose is to give an impression and fundamental information on the methods used there.
This is important, since we shall make use of many of the results achieved there.

3.1 The Work Of Spielman And Teng

In 2001 Spielman und Teng presented the principle of Smoothed Analysis in combina-
tion with a first investigation according to that principle for the Simplex Method in
[STO1]. The final analysis from [STO04], was published in 2004. It is the basis of our
following presentation.

3.1.1 The Geometrical Fundamental Result

The variant of the Simplex Method analyzed by Spielman und Teng in [ST04] makes
extensive use of the shadow vertex algorithm, which we have explained in section 2.4.
For that reason the total running time analysis is closely connected to the number of
shadow vertices of a perturbed polyhedron. This number or figure will play a dominat-
ing role in the course of this section.

First of all let a unit problem

maximize (v, x)

st. (a,z) <1 (EP)

(am,xz) <1

be given. In addition assume that we have a vertex x, of the feasible region X. More-
over let oy be optimal with respect to an objective direction uw. On that starting
position we can apply the shadow vertex algorithm in order to solve (EP). The insights
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3 Hitherto Existing Smoothed Analysis Approaches For The Simplex Method

gained in section 2.4 show that the number of pivot steps carried out can be bounded
from above by the number of shadow vertices S (aq, ..., @n,u,v) of X with respect
to the plane LH (u,v). Changing to the dual point of view demonstrates that the
number of shadow vertices corresponds to the number of those facets of the polytope
Y =KH(0,ay,...,a,), which are generated by d original restriction vectors (not 0)
and which are intersected by the twodimensional plane LH (u,v). We have illustrated
this relation in the following figure from section 2.4.2 .

Figure 3.1: Graphical illustration of the number of shadow vertices in the dual perspec-
tive

Since X shall be a perturbed polyhedron, the restriction vectors a4,...,a,, are not
fixed, but they are distributed according to the following stochastic principle:

a; ~ Ny (@;,0° - Ey)

with 0 > 0 and ||a;|| < 1foralli=1,...,m. So S := S(ay,...,an,u,v) becomes a
random variable and the condition of nondegeneracy 2.4.1 is satisfied with probability
1. From, the basis of that configuration Spielman and Teng derive the following result.
This is the geometrical fundamentum of all the following algorithmic investigations..

Theorem 3.1.1 (Shadow of a perturbed polyhedron).

Let d > 3 and m > d. w,v shall be linearly independent vectors and aq, ..., a,, shall
be normally distributed random vectors with standard deviations o > 0 and centers
ai,...,a, of norm at most 1. Let the random wvariable S stand for the number of
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3.1 The Work Of Spielman And Teng

shadow vertices of X = {x : (a;,) <1Vi=1,...,m} with respect to the twodimen-
sional plane LH (w,v). Then it holds that

3
E[S] < 58.888.678md

< 5
i 1
i (a, 34 /dln(m)>

In the following we present (in a very concise way) the essentials of the proof-strategy
in the proof of Theorem 3.1.1.

First one recognizes that without loss of generality o < 1/ <3 dln (m)) can be as-

sumed. In the case o > 1/ (3 dln (m)), one scales all restriction vectors down in

such a way that o =1/ (3 dIn (m)) is achieved. As a consequence the norms of the

centers of distributions become smaller. And this does not impact the validity of the
theorem. In the following let in addition two orthogonal vectors u;, uy of length 1 from
the plane LH (u,v) be given. Now one observes for values 6 € (0,27] the vectors
qp := uq - sin (0) + uy - cos (6).

Furthermore it is helpful to introduce for the vector ¢ € R? the notation

optSimp, (a,,...,a,). This notation stands for the system of all index sets A =
{AY ... A%} c {1,...,m}, for which the following condition holds: The vectors
anat,...,apq are linearly independent, the convex hull KH (aa:,...,aaq) is a facet

of Y and ¢ € KK (aa,...,aas). That means that we select all the index sets to
the optimal points on X with respect to the direction g and use that notation for that
system of sets. Since we deal with perturbations, the term optSimp, (ai,...,an)
is almost surely empty or it is an index set. Against this background it is useful for
the following considerations in this section to identify optSimp, (a,, ..., a,,) with the
corresponding index set resp. with the empty set.

In the next step one considers for £ € N the set {%, %, e Z%} of angles out of the
interval (0, 27| and one replaces the plane LH (u,v) by the ¢ vectors qy,...,q, such
that g; := u; - sin (Z%”) + uy - cos (‘%’T) A graphical illustration of that discretization
can be found in figure 3.2.

Instead of considering all facets of Y, that are intersected by the plane LH (u,v), one
concentrates on those facets that are hit by some directions out of {q, ..., q,}. If that
discretization is chosen sufficiently tight or fine, i.e £ — oo, then every desired facet
will be recognized and identified by that way. So we have the equation

E[S] = lim E |# U {optSimpqi (ay, .. .,am)}

{—00
1€{1,...,0}
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3 Hitherto Existing Smoothed Analysis Approaches For The Simplex Method

Figure 3.2: Discretization of the shadow plane

The term

# U {optSimpqi (ag,..., am)}

ie{1,....,0}

denotes the number of those facets that are hit by any of the ¢ vectors. For the
calculation and determination of that term one also has an alternative chance: One
counts how often the following case will occur: two successive directions gq; and q;
hit different facets. In that context we set q,,; = q;. In figure 3.2 we have emphasized
that configuration by two red-colored directions. Based on that consideration one can
introduce the indicator variable W; := W; (a4, ...,a,) fori=1,... ¢

W e { 1, ifl(ﬂ # optSimp, (ai,...,an) # optSimp,, (@,...,an)
v 0, else.

So one obtains

For the next steps one needs the set P, which is defined as follows:

Pi={(prr. .. pp) € RY™ ¢ ]| <2 foralli=1,...,m}.
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3.1 The Work Of Spielman And Teng

In combination with property o < 1/ (3 dIn (m)) one can show that

Pl(a,...,ay) € P] >1—m 294 (3.1)

The following remarks will clarify, that on the basis of the estimation (3.1) it is possible,
to focus only on those configurations of restriction vectors, for which each single vector
is located in the ball of radius 2 about the origin. In view of figure 3.3 and formulated
in a somehow different way one concentrates on those configurations of restrictrion
vectors aq, ..., a,,, which generate a dual polyhedron Y completely belonging to the
ball of radius 2 about the origin.

Figure 3.3: Graphical illustration of the ball containing all further configurations

For simplification of the notation we shall abbreviate the event (ay,...,a,) € P with
the notation P and accordingly we denote the complementary event by —P. Because
of P[P],P[=P] > 0 one can achieve the following estimation by a partition in two
conditional expectation values:

4

2 W

i=1

~P| -P[-P]
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14

> W

i=1

<E P|+1.

For the conditional expectation value E [Zle W,

P} we have as known

14

S

i=1

:Eﬁiﬂmmwﬂ

. P P)

P

Further we can concentrate on the estimation of E [Zle Wi | P] On the basis of the

definition of the indcator variable W; it is clear, that in the case of W; = 1 we will
always meet the event

0 # optSimp, (ay,...,an,) # optSimp,, (ar,...,ay).

So while changing from gq; to g, one hits or meets a new facet. Since we know that
the angles of both vectors differ by 27”, one concludes that the angle between g, and the
boundary of ¥ (optSz'mpqi (ay,..., a,m)) is less than 27” In summary the following

implication holds:

2
W;=1 = arc(q;, 0% (optSimpqi (ai,...,ay))) < %
This enables the estimation
. 2w
W, <1 [a’r’c (qi, (0> (optSzmpqi (aq,..., am))) < 7} ,

where 1 [ -] stands as already stated for the indicator function. Exploiting the monotony
of the expectation value one can state:

E[S] < lim E P

AT

+ 1.

¢
Z 1 {arc (qi, 0% (optSimpqi (a,..., am))) < 2%}

i=1

If one in addition applies the linearity of the expectation value, then one achieves:

¢ - -
. 2
E[S] < zlijgo ; E _]l {arc (qi,aE (optSzmpqi (al,...,am))) < % ‘ P] +1
: [ 2 | ]
= elggo Z P |arc (g;, 0% (optSz'mpqi (ai,...,ay))) < i P_ +1. (3.2

i=1 L
Now we can focus on the estimation of probability

P [arc (q, 0% (optSz'mpq (ay,..., am))) <€ | P]
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3.1 The Work Of Spielman And Teng

for an arbitrary g € wy. Suitable transformations enable the authors to deduce for that
aim an upper bound of the following kind:

d

P [arc (q, 0% (optSimpq (ai,..., am))) <€ | P] < (1 — m—29d+1)2

,EnlaXd P[O'Tc (anH (O’Ala"'aa’Aﬂ'*laa’Afrl""’G’Ad)) < €| (33)
NG m) .
#(A)=d Pi A OptSimpq (a’la sy am) = A} :

Here P} with A := {AY . A" c {1,...,m} und j € {1,...,d} is the set of all
aat,...,anq, satisfying:

1. For all g it results that s < 2 in case of optSimp, (ay,...,a,) # 0. Here s is
chosen in such a way, that sq € & (optSz'mpq (ai,..., am)) holds.

2. dist (a;,a;) <4 fir i,k € A\ {A}.
3. dist (CLAj, AH ({CLAl, e G/Ad} \ {G,Aj})) <4.

4. dist (a},,a;) <4 for all i € A\ {A7}. Here a3, is the orthogonal projection of
apni on AH ({apr,...,apne}\ {aai}).

In utilization of that very technical definition one can show that P C Pi. We remark
that in the probability above the term P} should be seen as an event like in the case

P.

The fundamental geometrical idea in the term on the right side of the estimation in
(3.3) is the following: In question is the probability that the intersection of the Y
boundary with the cone with angle e about the vector q is not completely contained in
the facet, conditioned on the case that the corresponding facet has been hit anyway. A
graphical illustration of the complementary configuration can be seen in figure 3.4.

A further evaluation of the probability

max_ Plarc(q, KH (aa:,...,api-1,@pi+1, ..., Gp0)) < €]
AC{Lm) , (3.4)
#(A)=d P A optSimp, (ai,...,a,) = A

is technically very complicated. This results mainly from the appearance of the angle-
term

arc (q, KH (a,A1, e, AAT-1, AAGHL, ., a,Ad)) .

In the approach of Spielman and Teng they focus on the set Pi and by the way they
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Figure 3.4: Graphical illustration of the cone about the vector g

can prove the following upper bound :

max Plarc (q, KH (aat,...,a5j-1,Qpi+1,...,Qpd)) < €|
AC{1m} |
#(2)=d P} AoptSimp, (ai,...,a,) = A]

9.371.990m d?
< _

€.
ob

Combinig this insight with the estimation (3.3) and taking into regard the information
from (3.2), yields (under use of further transformations) the long desired result:

58.888.678 md®
< .

E[S5]

o6
This finishes the sketch of the proof for Theorem 3.1.1. In the next section we shall

see how this geometrical result corresponds to an algorithmic procedure and gives in-
formation of the algorithmic complexity.

3.1.2 The Algorithmic Realization

Here as already announced we discuss the principal steps of the algorithmical realization
as in [ST04]. Thereto we are going to present the variant of the Simplex Method as
investigated by both researchers. This variant is used in their paper to solve general
linear optimization problems of the form

maximize (v, x)

LP
st. Ax <b (LP)
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3.1 The Work Of Spielman And Teng

with A = (a,...,a,)" € R™4 b = (b,....b™)T € R and m > d > 3. In
the context of Spielman’s and Teng’s perturbation principle each restriction vector
a; is a normally distributed random vector with center @, € R? and standard de-
viation o max—;__,|/(@;,b")||. Moreover each righthand side value b is a normally
distributed random variable with expectation value ¥ € R and the same standard de-
viation. Herefrom we get in addition the matrix A = (@, ..., @,,)" as well as the vector
b= (b',...,b™)T. The appearance of max,—; | (@ ")|| besides the parameter o in
the standard deviation can thus be explained: Scaling of the vector (a;,b") with value
(maxi—1,..ml (s, b%) ||)71 (let without losss of generality this be positive), produces a
normally distributed random vector with standard deviation ¢ and a center of norm at
most 1. Having the conditions of Theorem 3.1.1 from the previous section in mind this
will be very helpful.

We have already explained that the shadow vertex algorithm in its dual interpretation
can only be analyzed in the application on unit problems. For that reason Spielman
und Teng introduce in the definition of their Phase-1-problem positive righthand sides

51 bm, which replace the primary values bt,...,b™. After that any relaxed re-
strlctron (a;,x) < b' can via division by b’ be transformed in a unit restriction. For
the construction of the rexlaxed values b1 ,bm one needs foremost an index set

A= {Al, . Ad} c{l,...,m}. Afterwards one defines the values

M = oNe(maxi=1..mll(as,b)])1+2

7 = ollg(smin(Aa))]

Here S;nin (Aa) denotes the smallest singular value of Ax, i.e.

Az
in (Ap) 1=
Fmin (A2) =38

(3.5)

Herefrom one determines the relaxed righthand sides, which are positive, in the follow-
ing way:
N { M, forie A

bl R
T 2
\/Z—]:I, else.

Now the Phase-1-problem can be formulated:

maximize (v, x)

s.t. (@, x) <D _
(LP)
(@, ) < D™
For simplification one sets b := (lA)l, N IA)m)T Here the relaxed righthand sides are

chosen in such a way that the basic solution x = (AA)”BA belonging to the index
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set A is a vertex of the feasible region X of (1/41\3) A graphical illustration for that can
be found in figures 3.5 and 3.6:

nfeasible

Figure 3.5: The basic solution in red is not feasible as long as the orange restriction is
not relaxed

feasible

Figure 3.6: The basic solution in red - which had been infeasible before - becomes an
edge after relaxation of the orange restriction

On that basis we can _proceed to the determination of problem of Phase 2, which
interpolates between (LP) and (LP). For that aim one needs an additional interpolation
variable —1 < 2% < 1 and for each original restriction we introduce the following new
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3.1 The Work Of Spielman And Teng

and artificial restriction:

1 A 1—a% .,
(ai,w>§< J;x)bz—i-( Qx)bl.

For 2° = —1 one consequently obtains the restrictions of the Phase-1-program (@)
and for 2° = 1 we receive the restrictions of the original problem (LP). By means of
according transformations the interpolation problem can be represented in the following
way.

maximize ((1,0,...,0), (z° x))
st. ((=1,0,...,0), (2% x)) <1
((1,0,...,0), (2" ) <1

(b —b") 0 (b" + ") (LP)
<(Taa’l>7(x ,CC)> < T
B =5 o ) 0 gy < B
((f,am), (2%, z)) < —

The righthand sides of the restrictions are positive again. So they can by means of
division be converted into unit restrictions. Furthermore let the notation X stand for
the feasible region of (LP). If we find an optimal vertex in the course of executing
Phase 1 named &* of (ﬁ’), then one can from it construct the vertex (—1,&") of X.
Emanating from that one tries to reach a vertex of the original problem. Therefore
one uses the objective direction (1,0,...,0)T. If at the end of handling (LP) a solution
in the form (1,&") is available, then it can be shown that Z* is a solution for the
original problem (LP). Also all remaining cases, which are so far not discussed here
in detail, as for instance infeasibility, will be treated in the algorithm accordingly. In
addition the procedure in step 1 implies an additional routine, that is not absolutely
necessary for the solution of the problem. But its value lies in the fact that it facilitates
a better estimation for the running time. This comes from the fact that out of a
collection of potential starting bases one chooses that one having the best features. For
simplification of the notation the restrictions of (LP) will be marked according to their
appearance with a_q,ag, @y,...,a,, . Accordingly the righthand sides will be named
b0, 0. b

Algorithm 3.1.2 (Two-Phase-Variant of the shadow vertex algorithm ).

Input: A= (ay,...,a,) ., b=©0"....,0™)" andv

Procedure:

1. LetT = {Al, cee Agmdln(m)} be a collection of randomly chosen index sets such
that A; C {1,...,m} and # (A;) = d for all i. Let A € T be that index set with
maximal Spin (AA). Here Spmin (Aa) stands for the smallest singular value of

Ana as defined in (3.5).
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9 St M -— 9Nsmaxic, _ml(@ib)N14+2 ypd 7 = olg(smin(An))]

N M, forie A
3. Set b =

2
‘/Z—]TV[ else.

4. Choose t € R? randomly and uniformly distributed from the set
{t:olii=10>4vi)
Set u = (Apx)" t.

5. Start the shadow vertex algorithm for solving ([//73) under use of the start basis A
and of the auziliary objective direction w. If one detects unboundedness, then this

1s true for the starting problem, too. Then one can stop. Else let A be the index
set to the optimal solution just derived.

6. Let ¢ > 0 be such that

=]

—1 a,
_1,...,—Em .

7. Let A be the index set of the solution of (1713), which has been determined by the
shadow vertex algorithm starting with an optimal basis {—1}UA for the objective

(_Ca ’U).

8. Determine the solution (3°,&") of the system of equations ((2°,z),&;) = b* for
1€ A.

{-1}UA € optSimp_ ) (

S

9. For 7 < 1 the problem is infeasible and in the case of 2° = 1 we have an optimal
solution &*.

Output:

If the algorithm has stopped in step 5, then report “problem unbounded”. In case of
2% < 1 the report should be “problem infeasible”. Otherwise &* is the optimal point and
should be reported.

For the purpose of a smoothed analysis of that method Spielman and Teng investi-
gated all steps with a focus on step 5 and step 7. The first step can, as already
mentioned, be seen as a preparation routine. Here one compares all elements of the

group Z = {Al, cee Agmdln(m)} and one tries to make a best possible choice among
the (T;) available candidates. In the fourth step one draws a direction from the polar

cone associated to the start basis A. This choice simulates a uniform distribution over
a certain inner region of the poar cone. The chosen direction will serve as auxiliary
objective direction for the solution of the Phase-1-problem in step 5. If thereby an
optimal basis A can be found, then herefrom the basis {—1} U A to a vertex X will be
constructed in step 6 and an auxiliary objective direction in the associated polar cone
will be determined. Finally in step 7 the Phase-2-problem can be treated. This is done
to solve the original problem at last.
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3.1 The Work Of Spielman And Teng

In the following we look at steps 5 and 7 in detail and we speak about the essential
challenges in connection with the smoothed analysis. And we give some ideas how to
overcome those difficulties.

Phase 1:

For the solution of the Phase-1-problem (ﬁ’) one uses (as known) LH (u,v) with u =
(AA)Tt as the projection plane for the application of the shadow vertex algorithm. The
vector v may be seen as a fixed exogen input. In contrast one uses for the construction
of u a subset of the restriction vectors aq,...,a,. For that reason the projection
plane is not fixed and on the other side it is stochastically dependent of the problem
data. The bound in Theorem 3.1.1 is for this reason not suitable and confirmed for the
estimation of the necessary number of pivot steps in the solution process of problem
(LP). This is the first challenge appearing during the investigation of the running time
of Phase 1. In order to overcome those difficulties, Spielman and Teng play according
to the principle described below. Their first aim is to show that under the condition

for a constant 7y and in the case of a perturbation of moderate size the expected
number of shadow vertices of X with respect to the actually used projection plane
LH ((AA)Tt, 'v) is at most larger by a constant factor than the expectation value for

the number of shadow vertices of X with respect to the fixed plane LH ((AA)Tt_, 'v)

with A = (@y,...,am)" . Here t € R is a fixed vector with £ > 0 and with S =1,
However for a fixed matrix A the property

Smin (AA) > —

cannot be presumed. For that reason Spielman and Teng make use of the additivity of
the normal distribution. And they partition the disturbance term g, ~ Ny (0,02 - E,),
belonging to the restriction vector a; in two parts: The perturbation ggl) with standard
deviation ¢; and the perturbation ggz) with standard deviation ¢y. Here ¢; and ¢y are
basically chosen in a way, that in total 0% = (¢1)? + (s2)? is satisfied. After that they
set

m
7
(2)

i

a;, :=a;+g,;, and

a; :él—Fg

Analogously we obtain the matrix A. The same principle can also be applioed to the
righthand sides, which are subject to aperturbation as well.

b:=>b + R and
b:=b+h?,

The reason for that partition is as follows: The first perturbation enables Spielman and
Teng to base their ideas on the configuration smin(Aa) > 2. The property for the
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occurrence of sm,-n(AA) < 7 is extremely small, so that case allows may modify the

number of pivot steps at most by a constant 1. If we interpret A and b as the new
centers, then the condition from (3.6) can be regarded as satified. This permits the
associated estimation.

Further we must keep in mind that the righthand sides of the restrictions from (fP) in
fact are positive, however they usually fail to be of value 1. As known it holds:

N M, forie A
b =

%, else
with M := 2Memaxi=,...ml(@:ib)IN1+2 and 7 .= 2Ue(min(Aa)] | T transform the restriction

(a;,x) < b

into unit form, one can divide by b However, since the relaxed righthand sides are
correlated with the rest of the input data via the variables M and 7, the scaled re-
striction vectors would not necessarily be normally distributed. An application of the
bound for the number of shadow vertices from section 3.1.1 would not be allowed in
that case. This complication is treated and resolved by Spielman and Teng conceptu-
ally as follows: Since M and 7 are defined as discrete figures, one can show that with
high probability both attain only a small number of different values (the converse case
consequently can influence the number of pivots only by a value 1). This feature is
transfered also on the relaxed righthand sides. If one concentrates on a fixed configura-
tion of M and % for 131, ceey IA)m, then the righthand sides may be regarded as fixed.
Hence the transformation into unit restrictions is possible without accepting the loss of
the normal distribution. So the bound for shadow vertices from Theorem 3.1.1 remains
applicable. If one carries out that argumentation for each possible configuration of val-
ues and if one sums up the single upper bounds (there is a small number of summands,
so the result is not deteriorated significantly), then one obtains an upper bound for the
expectation value of the number of necessary pivot steps for the solution of Phase 1.

Phase 2:

For the solution of (1715) in the second Phase one uses the plane LH ((—(,v), (1,0,...,0))
as projection plane during the application of the shadow vertex algorithm. These vec-

tors are fixed, so we do not get into trouble. Nevertheless some challenges will appear,

as we will recognize soon. As a reminder we list the restriction data of the program

(LP) once more:

a_; = (=1,0,...,0), b

a, = (1,0,...,0), b =
- hi—pi 7 hi4bi
g, = (Ga), ¥ o= O (4
for i = 1,...,m. The two fixed vectors a_; and ag are located in the shadow plane

and have only a little impact on the number of shadow vertices. So it is permitted to
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3.1 The Work Of Spielman And Teng

disregard them in following considerations. A precise view on the restriction data that
are marked with (x) shows that b is influenced by the corresponding relaxed righthand
side b from Phase 1. This makes it clear that the righthand sides from (LP) are in the
same way correlated with the original problem data. Here the same complications and
difficulties arise as in the analysis of Phase 1. These can be resolved by an analoguous
treatment. For the upcoming considerations we may assume that the values b, bm
are fixed. But still the bound on the number of shadow verticec 3.1.1 cannot be apphed.
For that aim the restrictions of (LP) must be transformed in unit form by means of
division. This produces the scaled restriction vectors

g (3.7)

A new view on (x) shows, that for fixed b’ the righthand side b" becomes a normally
distributed random variable. This is the reason why the vectors in (3.7) do not possess
a normal distribution. To clarify that difficulty, Spielman und Teng show that the
distribution of an arbitrary

a;

b
in every neighbourhood (chosen small enough) be approximated by a normal distri-
bution. Exploiting the obvious interrelation beween the actual distribution and that
newly constructed distribution delivers an estimation for the number of pivot steps. An
important issue in that procedure is given — like in the investigation of the first Phase —
the exploitation of the additivity of the normal distribution. For the local approxima-
tion the disturbance term belonging to a; ., precisely g, ~ Ny (0,0% - E,) is partitioned

- gEQ). Here ggl) has the standard deviation p; and g @ has

In two parts g; = g,
the standard deviation py and in total (p;)? + (p2)? = 0%, The same partition is then
done for the right hand sides b. In the remaining argumentatlon the first perturbation
dominates and it determines— loosely spoken —the region of the local approximation.
On basis of that principal approachh the authors manage to achieve an upper bound

by use of a very technical analysis.

Combining the investigations of Phase 1 and Phase 2 and of their upper bounds, Spiel-
man und Teng can derive the following result.

Theorem 3.1.3 (Smoothed running time of the Two-Phase-Algorithm).

There exists a poynomial P and a constant oy, such that for each m > d > 3,
A= (ay,...,8,)" eR™ beR™ veRundo >0 it holds that:

E [C(A,b.v)] < min {79 <d,m,m> , (i;) + (dTJ +2}.

Here A is a normally distributed random matriz with center A and standard deviation
o max;(|[(@;, b)||) and b is a normally distributed random vector with the same standard
deviation and with the center b. Moreover C (A, b, 'v) stands for the average number of
pivot steps in the algorithm after input of the fixed problem data A, b und v.
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3 Hitherto Existing Smoothed Analysis Approaches For The Simplex Method

Remark 3.1.4 (degree of the polynomial).
Calculating the polynomial P explicitly delivers:

1 1 dm
P (d, m, ;) =Cp-d®-m® . (Inm)'®. T, g (—)

o

1 dm
+ Cy- (d+ 1)36-m85-(lnm)15-ﬁ-1g (7) +m + 2.

Here ' and Cy are absolute constants.

After reading the information of this section one recognizes the enormous effort, which
was made by Spielman und Teng for the derivation of the above stated result. The
introduction of an alternative approach by Vershynin in [Ver09] lead to a significantly
simpler and more elegant analysis. This will be the issue in the following section.

3.2 The Contribution Of Vershynin

In this section we present the contribution by Vershynin to the smoothed analysis of
the Simplex Method. It was first presented as a conference talk [Ver06] and in 2009 it
was published in more detail as a journal article [Ver09]. Vershynins approach consists
at first of an improved estimation method of the expectation value for the number
of shadow vertices of a perturbed polyhedron and in addition of a new algorithmic
realization of the Phase 1 — Phase 2 composition, which makes a simplified running-
time analysis possible.

3.2.1 Improvement Of The Geometrical Fundamental Result

For the expected value of the number of shadow vertices of a perturbed polyhedron
Vershynin derives the bound given in the following Theorem. The formulation directly
adresses the dual perspective.

Theorem 3.2.1 (Intersections of perturbed polytopes and planes).

Let d > 3. And let ay,...,a, be (independent) normally distributed random vectors
in R with centers of norm at most 1 and standard deviation o < 1/ (6 dln (m))

Consider a fired two-dimensional plane E in R? and the perturbed polytope V =
KH (ay,...,a,). The random variable K stands for the number of those facets of
V', that are intersected by the pland E. Then:

3
E[K] < Const - —.
o
Const is an absolute constant.

Remark 3.2.2.
Vershynin does not introduce the condition d > 3 for the dimension explicitly. But
the reason for that necessary limitation becomes obvious for the following reason. At
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3.2 The Contribution Of Vershynin

a certain stage in his estimation-appproach Vershynin [Ver09] makes use of a so-called
distance-result originating from the paper [ST04]. For the derivation of that distance-
result Spielman und Teng did apply a twofold coordinate transformation on some of
the original restriction data aq,...,a,, . After those transformations they work with
new vector-representations ¢, . .., cq € R92. This approach is only justified for d > 3.
For the running time investigation of the Simplex Method the constraint d > 3 is not
essential. And the interest in the Simplex Method surely focuses on higher dimensions
d. Nevertheless we shall deal with the twodimensional case in a more precise and
detailed matter in order to have for that case an upper bound of the same size as in
Theorem 3.2.1. For our goal of a smoothed analysis of the dimension-by-dimension
algorithm this will be essential. The reason is that in this algorithm for solving a d-
dimensional problem d stages k = 1,...,d have to be performed. And in each stage a
problem of according dimension has to be solved by use of the shadow vertex algorithm.
Now k = 1 is trivial, but £ = 2 could generate unforseeable difficulties. So we should
have a closer look at it. This will pay in the context of the smoothed analysis of that
dimension-by-dimension algorithm in chapter 5.

Now we present the fundamental approach of Vershynin for the derivation and we
discuss and lay a focus on the essential differences to the approach of Spielman and
Teng.

As annonced in section 3.1.1, Spielman’s und Teng’s investigation of the number of
shadow vertices of a perturbed polyhedron relies on the observation under the dual
perspective. One is interested in the number of facets of the dual polyhedron Y =
KH (0,a4,...,a,), which are generated by d original restriction vectors and which
are intersected by the plane ' = LH (u,v). One discretizes the plane by ¢ equidistant
directions and then one is at the starting point of the analysis. For graphical illustration
have a look at figures 3.1 and 3.2.

Vershynin’s interpretation of the situation is a little different. Consider the perturbed
polytope V= KH (ay,...,a,,) .! Now one recognizes that the number of facets of V|
that are intersected by the plane F/, equals the number of edges of the polygon V N E.
In figure 3.7 one observes an example for such an intersection.

'Dealing with V = KH (ay,...,ay) instead of Y = KH (0,a,...,a,,) is only a technical modifi-
cation and has no significant meaning.

95



3 Hitherto Existing Smoothed Analysis Approaches For The Simplex Method

Figure 3.7: An example for an intersection V' N E

Further considerations rely on that twodimensional configuration. The principle of
Spielman and Teng demands the following procedure: One looks consecutively from
the origin in all ¢ discrete directions qq, . .., g, and one determines the number of facets
intersected or hit in this way. Moreover one makes the discretization more and more
tight or capillary (¢ — o0), to avoid disregarding an edge. An illustration can be seen
in figure 3.8.

Figure 3.8: Calculation of the number of edges according to Spielman and Teng

In contrast to that Vershynin follows another principle. First of all concentrate on those
configurations of the restriction vectors aq, ..., a,,, that are contained in the set

P = {(pl,...,pm) c R>™ - ||p,|| < r fiir allez':l,...,m}

for r = 2. So one can assume that the intersection polygon VNE = KH (by,...,by) =:
W is contained in the circle disk of radius 2 in the plane E. Now we avoid counting
all edges of the polygon from the origin as viewpoint. Instead one uses an alterna-
tive method: Let an equilateral triangle with center of gravity in the origin be given.
Its vertices 01, 0o, 03 shall all have norm 8. They will serve as observation points for
counting the edges of W = KH (by,...,by). This is possible because of the follow-
ing insight, gained by Vershynin: For each edge K H (b;,by) of W there is at least
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3.2 The Contribution Of Vershynin

one viewpoint o;, such that K H (b;, b;) is an edge of KH (0;,by,...,by) and that
dist (0;, AH (bj,b;)) > 2 holds. A graphical illustration is given in figure 3.9, which
is similar to [Ver09, Figure 7.2].

Figure 3.9: The Three-Viewpoints-Principle

Exploiting that perception about the distance and transforming the origin in the point
0;, enables to establish for an arbitrary pair of points a1, x5 on the edge

KH (—o0; + bj, —0; + b;) that there is a proportionality between angle and Euclidean
distance.

c-dist (x1,xs) < arc(xy,xy) < dist (x1,x2) .

c is an absolute constant. In total we can draw the conclusion: Each edge of W can be
seen by one point o; from {01, 02, 03} under an angle, that differs at most by a constant
factor from the length of the edge. In addition the edge is preserved under the change
to the polygon K H (o0;, W) erhalten.?

Let us have a look at the counting principle of Vershynin. First we have to agree
on a certain notation. For a polytope of the foom Y = KH (0,a4,...,a,,) and for
a vector ¢ € R? the term facety (q) will denote the family of all d-element sets
A C {1,...,m}, such that the convex hull KH (aa1,...,axq) is a facet of Y and
such that it is intersected by the ray KK (q). The according intersection point will

2In chapter 4, we shall in detail deal with this Three-Viewpoint-Argument again, when we try to get
an estimation of the expected number of vertices of a perturbed polygon.
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3 Hitherto Existing Smoothed Analysis Approaches For The Simplex Method

be denoted by gy . If the vector g is in general position, then facety (q) either is
the empty set or it consists of only one element. In that case Facety (q) denotes the
corresponding geometrical facet.

As known one is interested in the expectation value E[K] of the number of facets
of V.= KH (ay,...,a,), that are intersected by the twodimensional plane E. For
that purpose one starts with partitioning the potential configurations of the restriction
vectors ayq, ..., a,, in the above mentioned set P, and in the complementary set. For
simplicity we denote the events of belonging or not to the sets by P, or =P,. On that
basis the following partition resp. estimation of the expectation value can be done: 3

[
[

For the remaining expectation value one can use the Three-Viewpoints-Principle. This
is justified by the limitation of the configurations of a4, ..., a,, on the set P,. We shall
give a sketch of ist application. Let 01, 02, 03 be the vertices of an equilateral triangle
in the plane E with center of gravity in the origin and with |lo|| = |lo2|| = |los|| = 8.
Moreover let W; = KH (0, —o; + W). Using the fact that each edge of the polygon
W =V N E is preserved for at least one of the three viewpoints one obtains: *

E[K] = [Pz]]+E[K~]l[—|P2H

E[K -1
E[K-1[P] + 1.

E[K] <E[# ({facety, (g5) : 0 € (0,27, i =1,2,3}) - 1[Pyo]] + 1.

Here q, := u; - sin (0) + uy - cos () and wuy, uy are orthogonal vectors of length 1 from
E. One uses the set Z, = {qe c 0= 27”, ceey g%} of directions in the same way as
Spielman and Teng did in order to discretize the problem:

E[K] < lim E [# ({facety, (q) : g€ Z;, i=1,2,3}) -1 [Py]] + 1. (3.8)
— 00

Now the case can occur, that an edge of W = VN E under view from o; is hit by several

discrete directions. In that case one keeps only that direction q € Z,, which belongs to

the largest angle § aus {27 Zﬂ} This implies that for the angle between g and

7, ceey Z
the boundary of the edge Facety, g (q) it holds that:

2
arc(q,0Facety,ng (q)) < A (3.9)
Moreover the Three-Viewpoints-Principle enables us to restrict the incorporation of the
viewpoint o; to those configurations, where for an arbitrary pair of points &, 25 on the

edge Facety,ng (q) the known proportionality-condition is satisfied:

c-dist(xy,x3) < arc (xy,xs) < dist (xq,T2) . (3.10)

3All the configurations not belonging to P, can have an impact of at most 1 on the expected value.
4Here and further we identify facety, (q) with the corresponding index set. Since the according
polytope is in general position almost surely, facety,, () contains at most one index set.
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3.2 The Contribution Of Vershynin

Combining the results from (3.9) and from (3.10), yields the following finding : It is
sufficient to take the index set facety, (q) into regard for the discretized expected
value (3.8) , if

2
dist (qyy,., OF acety, (q)) < _7; =: %
C .

holds. Instead of an angle-condition we now have a distance-condition. In total we
obtain

I

E[K] < lim E[# ({facetwi (q) : dist (qy,,0Facety, (q)) < %

AN

q € Z, ¢:1,2,3}) -]L[Plo]} +2.

Further considerations lead to the estimation

C
E[K] <3 sup lim /- max P|dist(qy,0KH (bai,...,bpa)) < —
b1, bm {00 q€Z, !
AC{1,...,m}
#(A)=d
und Py | facety (q) = A | + 2.
The supremum will be taken over all normally distributed random vectors by, ..., b,,

with centers of norm at most 9 and with standard deviation o, as known from the
original vectors ay, ..., a,,. Besides that we have Y = KH (0,b;,...,b,,). A demon-
stration of the appearing probability in this seemingly very complicated term is possible
as follows: Onme asks for the probability that the intersection of the e-ball about the
point gy with the surface of the polytope Y is not completely contained in the facet
being hit. A graphical illustration of the complementary configuration is given in figure
3.10.
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Figure 3.10: Graphical illustration of the distance-probability

In contrast to the investigation by Spielman and Teng for the probability (3.4) of
small angles Vershynin can concentrate on the investigation of the probabilty for small
distances. This simplifies the technical evaluation and yields an improved result

3
E[K] < Const - —;.
o
Here we finish the description of Vershynin’s approach for estimating the number of
shadow vertices of a perturbed polyhedron. From Theorem 3.2.1 we deduce a Corollary
, that makes a certifying statement for arbitrary standard deviation values o.

Corollary 3.2.3 (Number of shadow vertices of a perturbed polyhedron ).

Let d > 3. ay,...,a, shall be (independent) normally distributed random wvectors
in RY with centers of norm at most 1 and standard deviation o. Let E be a fized
twodimensional plane in R and observe the perturbed polyhedron

X ={zx: (a,z) <1,...,(am,x) <1}. The random variable S may stand for the
number of shadow vertices of X with respect to the plane E. Then:

3
E[S] < Const - (d—4 +d° - (lnm)2> :

o
Const is an absolute constant.

Proof. First consider the function 7' : R? x --- x R? — N, defined as follows : For
m vectors zi,..., 2, the term T'(z1,...,2,) stands for the number of facets of the
polytope Y = KH (0, z1,. .., 2Z,), not containing the origin, which are intersected by
the plane E. From 2.4.2 we know the dual perspective. This helps us to understand
the following equivalency for the random variable S: S = T(a4,...,a,). Regarding
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the random variable K, also appearing in Theorem 3.2.1, then the following estimation
becomes obvious: T'(ai,...,a,) < K. By use of the monotony of the expectation
value we obtain:

As indicated, the expected value is taken over the random vectors a, ..., a,,. Now we
take advantage of a distinction of cases.

Case 1: 0 < 1/ (6 dln(m)). Here we directly can apply Theorem 3.2.1:

3
E[S] <E[K] < Const - %.

Case 2: 0 > 1/ <6 dln(m)). In that case one scales the vectors a4, ..., a,, down in a
way that the resulting normally distributed random vectors, called by, ..., b,,, get the
standard deviations ¢’ = 1/ (6\/dln(m)>. Since by the way the norms of the centers

also become smaller, we can apply the estimation from Theorem 3.2.1 to the vectors
bi,...,b,. It holds:

Eb [T(by,...,by)] < Const-6*-d°- (Inm)>.

can be shown easily. Therefore use the fact that the vectors by, ...,b,, were gener-
ated by scaling from a,...,a,. And remember the property of T: T(z1,...,2y,) =
T(A\zy, ..., \zy,) for arbitrary zq,..., 2, € R? and A > 0. One deduces:

E [S]= E [T(ay...,a,)] <Const-6*-d° (Inm)>.

Combining both cases yields

d3
E [S] < max {C’onst ~—, Const - 6*-d’- (In m)2}
o

d3
< Const - — + Const - 6* - d° - (Inm)?

ot

43
< Const - 6* - (—4 +d° - (In m)z) :
o

This proves the proposition. O
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3.2.2 New Algorithmic Proposals

In this subsection we introduce the fundamental principle of the method created by
Vershynin, which he has analyzed. We will leave some technical details out in order to
be somehow concise. After that we study the impact on the smoothed analysis.

Vershynin’s method is designed to solve linear optimization problems of the following
form

maximize (v, x)

LP
st. Az <b (LP)
with A = (a4,...,a,)T e R™ b= (b!,...,b™)T € R™ and m > d > 3.
For that purpose one starts with considering the coresponding unit problem
maximize (v, x
(v, ) (EP)

st. Ax <1

Now one calculates a solution point for that problem. For achieving that goal, Vershynin
suggests a randomized procedure. The fundamental idea behind that is: Instead of
determining a vertex of the feasible region Xgp von (EP), one adjoins an artifical vertex.
This vertex can serve as a starting point for the shadow vertex path. Now we present
the principle for adjoining that vertex. In that context the dual perspective as presented
in section 2.4.2 is very helpful . It is known that Y = KH (0,ay,...,a,,) is the dual
polyhedron to Xgp. Adjoining a vertex to Xgp is equivalent to adjoin a facet to Y. We
can manage that task as described: Select first a direction w uniformly distributed in
the unit sphere wy. Now create in the hyperplane {x : (u,x) =0} a regular simplex
whose center of gravity is located in the origin. Now we want to transform that simplex
in a facet of Y. Therefore we add the vector nu with n = elmaxi=1..mlail)] o each
of the simplex-vertices by, ..., by. This ensures that each of the transformed vertices
emerges from the set Y. Thus we have got the additional vectors @,,,1,. .., @myq.° On
the basis of the described construction it is assured that K H (@11, - - ., Gmeq) is a facet
of Yt := KH (0,a4,...,a,.4). Consequently the restrictions corresponding to the
vectors @11, - - -, Qg generate a vertex of the modified (primal) feasible polyhedron

Xtoi={zx : (a,z) <1,....{(@pmiag,x) <1}.

In the dual view it may occur that in consequence of the appearance of the additional
vectors more than one new facets are created. And it may happen as well that hitherto
esisting facets disappear. ¢ A graphical illustration is given in figure 3.11. Our actions
have adjoined the red facet to Y. By the way the orange colored facets were generated as
well. On the contrary the two grey colored (dashed ) facets disappear. This modification
transforms Y into Y*. The primal meaning is that three new vertices arise and two
hitherto existing vertices become infeasible.

®Some details about the construction of @, 1,...,@miq are omitted. This is because they are very
technical and they do not concern the fundamental principle.
6Tn this context we speak of a facet only if the origin is not involved.
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Figure 3.11: Augmentation of an additional facet to Y

Taking the newly generated restriction vectors into regard one can construct the ex-
tended matrix A" := (ay, ..., am+d)T. Using this matrix one can formulate the modi-
fied problem

maximize (v, x)

EP*
st. AT < 1. ( )

For that problem we know one vertex according to the construction. This vertex is yet
optimal with respect to the direction w. Hence the shadow vertex algorithm can be
started at that vertex in order to solve the problem.

It may happen that (EP') due to the additional restrictions has another resp. different
optimal point than (EP). Algorithmically this difficulty can be treated as follows. At
first one solves the modified problem (EP*) and after that one checks, which of the
three following cases has occurred.

1. If (EPT) has unbounded objective, then this holds for (EP), too. In that case we
can stop.

2. If for (EP') an optimal point * has been found, where none of the artificial

restriction vectors a,,i1,...,@miq is involved, then x* is definitely a solution
also for (EP).

3. If we have found a solution for (EP), where some of the artificial vectors
Qpil,-- -, Ay are active and involved, then one cannot draw any conclusions
on the solution of (EP) . In that case the vectors @, 1, - . ., @niq have failed their
purpose. They should be dropped. Instead one tries with another selection of an
additional facet anywhere else. This construction process should be started from
scratch.

The procedure described above is nothing else but Vershynin’s fundamental principle
for solving (EP). It is stated below in algorithmic notation.
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Algorithm 3.2.4 (Randomized principle for the solution of (EP)).

T

Input: A= (ay,...,a,)" andwv

Prozedure: Repeat resp. iterate the steps 1 und 2, until one of the following cases
occurs.

1. The index set AT belonging to the optimal ™ of (EP") of tight restrictions does
not contain any element from the accessory set {m+1,....,m+d}.

2. The problem (EP") is unbounded.

Step 1 According to the demonstrated principle construct the additional

restriction  veclors  Qumi1,...,Qmiq and use the extended  matrix
AT = (a1,...,amq)T to formulate the modified unit problem (EPY). Then the
vertex x, corresponding to the index set {m +1,...,m+d} is an optimal solu-

tion on the feasible set of (EP") for the objective direction w.

Step 2 Make use of the shadow vertex algorithm in the following way. Start at x, and
use the auzxiliary objective direction w in order to find an optimal solution for
(EP*T). If that objective is not unbounded for that problem, then let AT be the

index set belonging to the solution x™.

Output: If the iteration loop above has been aborted because of unboundedness of
(EP" ), then one has to send the message “problem unbounded”. FElse the output should
be the optimal solution ™.

Now it is the intention, to integrate that principle into a solution process for the original
(LP). To achieve that goal one interpolates between the problems (LP) and (EP). For
that purpose one introduces the interpolation variable ¢ € [0,1] and one defines the
restrictions

Az <t-b+(1—1t)-1.

Moreover we should have the possibility to lay stress on certain values of ¢. Therefore
one introduces a parameter A\ € R and one changes the objective function to (v, )+ At.
So one is in the position to formulate a linear optimization problem that interpolates

between (LP) and (EP):

maximize (v, x) + A\t

Int LP
st Az <t-bt(1—1)-1, 0<t<1. (Int LP)

For fixed A € R the problem (Int LP) behaves in case of ¢ = 1 like the original problem
(LP), since A is a constant and for ¢ = 0 it behaves like the corresponding unit problem
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(EP). For A — —o0 one can attach importance to t = 0 and for A — oo accordingly to
t = 1. Furthermore (Int LP) can be formulated as a unit problem in R¢*1:7

maximize
s.t.

(v, A), (, 1))
(0’_00)7(m’t)> <1

((0,1), (z,1)) <1 (Int EP)
((as, 1=V

a;,

Now we have the ability to formulate a procedure for solving general linear optimization
problems.

Algorithm 3.2.5 (Two Phase version of the Simplex Method for (LP)).
Input : A= (ay,...,a,)", bandv

Procedure:

Phase 1 Solve (EP) by means of algorithm 3.2.4. If this reports that the problem is
unbounded, then (LP) does not have an optimal solution and one can stop. Else
the just calculated optimal point & of (EP) and t = 0 delivers a limit solution of
(Int LP) for A — —oo. Use that solution as a starting point for Phase 2.

Phase 2 Use the shadow vertex algorithm in order to determine a limit solution (x*,t*)
of (Int LP) for A — +oo. Ift* < 1, then (LP) is infeasible. Elsewise x* is a
solution of (LP).

Output: Report according to the achieved insight either the optimal point * or alter-
natively the message “problem has no solution.”.

Vershynin uses limit solutions for determining the algorithm.
Nevertheless he makes clear that in practical applications the use of the limit solu-
tions is not necessary. He explains this as follows: A solution for A — —oo is optimal
for the feasible region of (Int LP) with respect to the objective (0,—1). In almost the
same manner one obtains the optimality with respect to the vector (0, 1) for A\ — oc.
However both vectors are linearly dependent and consequently they do not span a
twodimensional plane. Remember that we need such a plane for the execution of the
shadow vertex algorithm. For that reason one is in need of an additional vector. Ac-
cording considerations enable Vershynin to show that the vector (v,0) is suitable for
that purpose. Hence we use the projection plane LH ((v,0),(0,1)) in Phase 2.

So we have learned about the fundamental principle of Vershynins algorithmic method.
For additional aspects and details we refer to the original paper. Now we have to clarify,
which impacts of that method on the smoothed analysis can be observed. Here the
restriction data (ai,b'),..., (@, b™) are not fixed, but they are normally distributed

"Vershynin explains in detail in [Ver09, Section 3.2] how to deal with vectors of the form (0, —c0).
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3 Hitherto Existing Smoothed Analysis Approaches For The Simplex Method

random vectors with standard deviation o and centers of norm at most 2. Phases 1
and 2 from algorithm 3.2.5 can still be investigated separately. Furthermore we should
remark that the upper bound on the number of shadow vertices from Theorem 3.2.1
serves as a geometrical basis for the investigation of the algorithmic running time.

Phase 1:

For the investigation of Phase 1 it is helpful to consider algorithm 3.2.4 in detail. There
the first and the second step will be executed one after another, until unboundedness
becomes obvious or until a solution of (EP) is asvailable. From the viewpoint of the
running time analysis the question arises, how many iterations resp. loops have to be
run through. As an answer Vershynin can determine an expected value. We present
and discuss the essential ideas. Before some notations should be clarified: A halfspace
in R? is a set of the form {x : (z,z) <0}, where z # 0 may be an arbitrary vector.
For an affine halfspace we need in addition a number s and we get {x : (z,x) < s}.
The definitions for a hyperplane resp. an affine hyperplane are likely. Here only the
inequalities are replaced by equations.

Furthermore we have to explain the term numb set as introduced and used by Vershynin.
This is the set of vectors a, such that the addition of the restriction (a,x) <1 to the
original restrictions of (EP) does not change the optimal solution resp. does not change
the property of unboundedness. For that set Vershynin can show that in any case this
numb set will contain a half space. We are going to explain and to illustrate the
according argumentation. If (EP) is bounded, then for instance the numb set (in the
dual perspective ) is that affine halfspace, which is bounded by AH (Facety (v)) and
which contains the origin. Hence the numb set contains a half space, which will be
denoted by H. A graphical illustration for that can be found in figure 3.12, which
uses the dual dual perspective. The grey highlighted facet of Y, which is intersected
by the direction v, is Flacety (v) and the dashed extension represents the hyperplane
AH (Facety (v)), which bounds the numb set from above. Plotted in grey is the
halfspace H, a subset of the numb set.

In case of unboundedness the illustration of numb set is more complicated. Nevertheless
it pays to look at the illustration in figure 3.13. We see a dual polytope Y, which
corresponds to an unbounded primal feasibility region X. We recognize this by the fact
that the origin belongs to the boundary of Y. Since furthermore the objective direction
does not hit any facet v, that does not contain the origin, we can conclude that the
objective can be improved arbitrarily on the primal polyhedron X. This means that
unboundedness is at hand. The halfspace given in grey H is contained in the numb set.
This can be perceived by the following consideration: If one adds an arbitrary vector
from the grey region to the convex hullY = KH (0, ay,. .., a,,), then the configuration
just described remains as it is. Besides we recognize that the objective direction v and
the polytope Y are located on different sides of the hyperplane bounding the halfspace
H.
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3.2 The Contribution Of Vershynin

Figure 3.12: Graphical illustration of the numb set under boundedness

Figure 3.13: Graphical illustration of a subset of the numb set in case of unboundedness

This characterization just mentioned holds in general in the case of unboundedness.
The numb set contains a halfspace H, bounded by a hyperplane, which on one hand
separates v from Y, and which on the other hand is determined by a facet of Y con-
taining the origin. It is very difficult to make statements about the size of the numb
set in general. Essential and sufficient is the perception that the numb set contains
some half space H. In the following course of the argumentation we can —in the case
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3 Hitherto Existing Smoothed Analysis Approaches For The Simplex Method

of boundedness and in the case of unboundedness as well — make use of the existence
of such a halfspace.

Drawing the auxiliary objective vector w from a uniform distribution over the unit
sphere wy, as announced at the begin of this section, it becomes obvious that this
vector belongs to the halfspace ‘H with probability % The application of methods from
geometrical functional analysis enables Vershynin to conclude in addition, that with
probability p’ > i also the vectors a,, 11, . . ., @niq, whose location is strongly influenced
by the direction of u, also are contained in H®. Exploiting that H is contained in numb
set, it results, that with probability p > 1 the problems (EP) und (EP™) either have
the identical optimal solution or both are unbounded. The consequence is that in
algorithm 3.2.4 on the average at most four iterations are carried out until the final
vertex is reached and the iteration can be aborted. For that reason it is permitted to
concentrate on one representative iteration. After that one should multiply the result
resp. the number of pivot steps by the factor 4.

Let us direct our attention on one single run of such a loop in algorithm 3.2.4. In step
1 we construct — as explained — an additional artificial vertex. This is done in a way
that it becomes optimal with respect to the coobjective direction w. And from that
vertex one starts the optimization process in direction v. According considerations
enable Vershynin to show, that in the view of the conditions for Theorem 3.2.1 the use
of the projection plane LH (u,v) does not at all create significant complications for
the application of the shadow vertex algorithm. Nevertheless we should focus on the
construction of the modified problem (EP™). Here we first create vectors by, ..., by
and after that they are shifted by the vector nu with n = elmmaxi=i,.mla:iDl —So we
obtain the additional vectors @, 1, .., @ny+q. These are necessary for the construction
of (EPT). In that context we should take three points into regard:

1. There are d additional and artificial vectors a1, ..., Gmiq.
2. These vectors are dependent on w due to the rules for their construction.

3. Moreover the vectors are also correlated with the original restriction vectors

ai,...,a, via the condition 7 = el™maxi=1,...mlla:DT,
The second point does mnot cause great difficulties. Roughly spoken
Vershynin’s approach does not make significant conditions with respect to the vector
u, which are necessary for the construction of @, 11, ..., Qpiq.

For the third point the following ascertainment ist important: The variable n =
vvvvv mlleiDl does attain only discrete values. On that basis one can show that
with very high probability n attains values from a set M with low cardinality. For that
reason it is possible to disregard all cases, for which 7n attains a value outside of M.
This holds, because they can influence the expected value for the number of pivot steps
at most by the value of 1. For a fixed value n € M there is no correlation, such that

8Compare for a graphical illustration once more in figure 3.11
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the discussed difficulty can be dissolved via the separated consideration of all values in
M.

Roughly spoken, the concern from point 1 is met by Vershynin by artificially perturbing
the additional vectors @, 11, ..., @mym+q. So he can treat them in principle in the same
way as the original restriction vectors. .

The approach described finally leads to a point, where one is able to apply the upper
bound for the number of shadow vertices from Theorem 3.2.1. So one is in the position
to gain an upper bound for the expectation value of the number of pivot steps for
solving 1. Now we come to the final discussion of Phase 2.

Phase 2:

As already mentioned, we use the fixed projection plane LH ((v,0),(0,1)) in the ap-
plication of the shadow vertex algorithm for the solution of Phase 2. Moreover the
restriction vectors (ay, 1 —b'), ..., (@, 1 — b™) of the interpolation problem (Int EP)
are normally distributed. So we do not get into trouble. The two fixed vectors (0, —oc0)
und (0, 1) should be considered more carefully. Since they are located in the projection
plane LH ((v,0),(0,1)), a little additional consideration suffices to be permitted to
disregard them. Hence the upper bound for shadow vertices from Theorem 3.2.1 can
be applied and an estimation for the average number of pivot steps for the solution of
Phase 2 can be obtained.

On the basis of the presented algorithmic principle and of the sketched approach in the
analysis of the running time, Vershynin can prove the final result:

Theorem 3.2.6 (Smoothed running time of the Two-Phase-Simplex-Algorithm ).
For an arbitrary linear optimization problem with d > 3 variables  and m > d restric-
tions Algorithmus 3.2.5 requires on the average not more than

O ((lnm)?-In(In(m)) - (o™ + & - (Inm)*> + d” - (Ind)*))
pivot steps for the solution of the corresponding perturbed linear optimization problem.

By presentation of the smoothed analysis for the Simplex Method under the approach
of Spielman and Teng on one side and of Vershynin on the other side we have learned
about the main studies done until now in that field.

9Vershynin formulates at this place the condition d > 3. For the exclusion of d = 3 there is no
evident reason. After consulting the author, this formulation it is probable that this was caused
by a typing error.
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4 Smoothed Analysis Of Polyhedra In
Dimension 2

In this chapter we shall — based on the methods of [Ver09], [ST04] and[Bor87] — derive
an upper bound for the expected number of vertices of a perturbed polyhedron in
dimension 2. By the way we supplement the estimation for this quantity derived by
Vershynin (compare section 3.2.1) by clarifying the case of dimension 2. That seemingly
discrete geometric result is necessary for our purpose, since we want to have a smoothed
analysis for the dimension-by-dimension algorithm in chapter 5. And the first stage
of that algorithm is an application of the shadow vertex algorithm in dimension 2.
This chapter is organized as follows: After some introducing remarks we describe the
problem for our investigation explicitly. Then we explain a coordinate transformation,
which will be useful for further considerations. It will assist us when we deal with the
estimation of the probability of small edges in the next section. In the fourth part of this
chapter we make use of the so-called Three-Viewpoints-Principle from [Ver09]. Finally
we summarize in order to obtain the desired estimation for the number of vertices.

4.1 Formulation Of The Problem

As stated before, we care about a Smoothed Analysis of poyhedra in dimension 2.
More precisely we want to obtain knowledge about the expected number of vertices of
a twodimensional polyhedron defined like :

X={x: (a,z)<1,....{(ap,x)<1}.

In the context of Smoothed Analysis the restriction vectors aq,...,a,, are not fixed,
but they follow a normal distribution having these features:

a; ~ NQ (C_Li,O'Q . Ez)
1

24/In(m)

In view of our goal to get an estimation for the expected number of vertices it is
advantageous to change from the primal point of view to the dual perspective. Therefore
we remember the results from section 2.4.2 and we look at the polyhedron dual to X

and ||a;|| <1foralli=1,...,m as well as 0 <

Y;:{ngQ : (y,zc)§1Va:EX}:KH(O,a,1,...,am).

As a consequence of the nondegeneracy condition 2.4.1, which applies for our pertur-
bation principle with probability 1, there is a 1-to-1-relation between the vertices of X
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4 Smoothed Analysis Of Polyhedra In Dimension 2

and those edges of Y, which join two vectors a; and ay.'Such edges will be identified
as proper edges . In order to calculate the number of vertices of X it is sufficient to
determine the number of proper edges Y. Let V' be the random variable denoting just
that number.

Based on the insight that Y = KH (0,a,,...,a,), we consider the slightly modified
polygon

P=KH (ai,...,a,).

All the edges of this polygon P are created by pairs of restriction vectors aq, ..., a,,
and the random variable K shall denote the number of edges in P. It is useful to know
that each proper edge of Y automatically is an edge of P, too. Hence V' < K and the
monotony of the expected value delivers

E[V] <E[K].

So for getting an upper bound for the expected value of V' we are allowed to concentrate
on the evaluation of E [K]. In that context we gain the following result. That statement
will be proven as a theorem 4.5.1 in section 4.5.

Theorem 4.1.1 (Number of edges of a perturbed polygon).
Let ay,...,a,, be independent and normally distributed random variables in R? with
centers @y, ..., a,, of norm at most 1 and with standard deviation o < L__ Further-

2+/1In(m)

more the random variable K shall stand for the number of edges P = KH (a, . .., ay,).
Then under the mentioned perturbation model it holds:

1
E[K] < Const - —;.
o

The expected value is calculated over the random a., . .., a,, and Const is an absolute
constant value.

An illustration for the meaning of that theorem is given in 4.1.

Figure 4.1: Original polygon with 60 edges and polygon generated through perturbation

1 Usually one calls those the facets of 1st kind
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In combination with the considerations mentioned above we can prove the following
corollary.

Corollary 4.1.2 (Number of vertices of a twodimensional perturbed polygon).

Let aq,...,a,, be independent and normally distributed random wvectors in R? with
centers @i, . ..,Q,, of norm at most 1 and with standard deviation o. Furthermore let
the random variable V' denote the number of vertices of the twodimensional polyhedron
X ={zx: (a,z) <1,... {(an,x) <1}. Then under our perturbation model it holds:

E[V] < Const - (% —I—ln(m)) :

That expected value is calculated over the random vectors ay, ..., a,, and Const is an
absolute constant.

Proof. First consider the function T': R? x - - - x R? — N, which is defined like that: For
m vectors 2, ..., Z,, the function T'(z4, ..., z,,) stands for the number of those edges
of the polygon Y = KH (0, 2z, ..., 2,), where the origin is not involved. By the help
of the dual perspective, known from 2.4.2, one recognizes for the random variable V' the
following equivalence: V' =T (ay, ..., ay). For the random variable K used in 4.1.1 in
addition the following estimation holds: T'(ay,...,a,) < K. Taking the monotony of
the expected value into regard, we see:

E [T(a,...,an)]< E [K].

ai,....am ai,....am

As already mentioned, the expected value is in each time calculated over the random
vectors aq, ..., a,,. The following distinction of cases will be useful for further consid-
erations.

Casel: 0 <1/ (2\ /ln(m)). Here we can directly apply theorem 4.1.1 and one obtains

E[V] < E[K] < Const - —.
g

Case 2: 0 > 1/ <2\ /ln(m)>. In that case one should downscale the vectors a4, ..., a,,
so far, that the resulting normally distributed random vectors by, ..., b,, exhibit the
random deviation ¢’ =1/ <2\/1n(m)>. Since during that procedure the norms of the

centers decrease too, we can now apply the estimation from theorem 4.1.1 to the vectors
bi,...,b,. One obtains:

E [T(by,...,by,)] < Const-2?-In(m).
In addition the equality

E [T(al, Cee a,m)] = E [T(bl, ey bm)]

ai,...,&m bi,....bm
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4 Smoothed Analysis Of Polyhedra In Dimension 2

can easily be ensured. For that purpose let by,...,b,, and a4,...,a, be a result of
rescaling and use the insight about T: T'(z1,...,2,) = T(Az1, ..., Az,,) for arbitrary
z1,...,2m € R and X\ > 0. By the way one obtains

E [Vl]= E [T(ay...,a,)] <Const-2* In(m).

ai,...am ai,...am

Combination of both cases delivers:

at,...,am

1
E [V] < max {C’onst +—5 » Const - 2%. ln(m)}
o
1 2
< Const - — + Const - 2° - In(m)
o
<C 2. (L4
< Const - 2% =T n(m) | .

This concludes the proof. O

This corollary will be very helpful during the Smoothed Analysis of the dimension-by-
dimension algorithm in chapter 5.

Remark 4.1.3.

In purely geometrical context other authors have already dealt with similar questions in
compatible form in [Dam06] and[DGG13]. The closest relationship to our considerations
exists in the methods and results of [Dam06]. The reason is the fact that there also the
basis is a normal distribution of the perturbation. But if one translates things into our
situation one sees that there are different conditions on the centers of the distributions
ai,...,a, of the random vectors. These are points in the unit square, [0, 1]2. In
order to have a consistent application of the results obtained so far for the Smoothed
Analysis of the dimension-by-dimension algorithm we need to have the results exactly
in our desired form.

After a short introduction we have given an exact formulation of the problem, which
we want to discuss and to solve in the course of this and the next chapter. Our next
aim will be to carry out an advantageous coordinate transformation.

4.2 The Transformation Of Coordinates Under Use

Before starting with the description of the transformation of coordinates, we remark
that Spielman and Teng work in their Smoothed Analysis [ST04] of the Simplex Method
with an analogous method, which is applicable also in higher dimensions. For that
reason our final results with regard to the functional determinant coincides with the
result of Corollary 2.28 for d = 2 obtained in their analysis. However the technique
for the reasoning after having transformed coordinates cannot be transfered directly to
the situation in R?. So we should show our way to do that for d = 2.
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4.2 The Transformation Of Coordinates Under Use

Consider two vectors a; and ay in the plane. As a consequence of the condition of
nondegeneracy 2.4.1, which is valid with probability 1, we may assume that a; and a
are linearly independent. On that basis we observe the straight line G := AH (a;, ay),
which is determined by these two points. In addition consider a vector v € wsy, which
generates the straight line # := LH (v). Now and in the following we act on the
assumption that the straight lines G and H intersect each other, i.e. G NH # (). This
means no significant loss of generality, since all configurations of a; and a;, which
generate a line G parallel to H, form a nullset and therefore do not influence the
expectation values.

For the description of the location of the two a; and a; we will do without cartesian
coordinates. Instead we first fix the position of the straight line G. For that purpose
we need two variables:

e The variable ¢t with t € R locates the point ¢- v, where the lines G and H intersect
each other. This point is used as a reference point in the line.

e Besides we need the ¢ such that —% < ¢ < 7. This variable tells us the angle
between the normal vector w of G and the direction of v. We measure the angle
anti-clockwise. w shall be that one of the two possible normal vectors, which
exhibits a nonnegative scalar product with v.

In addition two more coordinates are required. They should locate the two points a;
and a; on G. Therefore we use the following notation:

e for the determination of the location of a; and a; on the straight line G we use
the real variables b; amd by.

It remains to determine the direction in the straight line G until we have the final
coordinates b; and b;. Before clarifying that point we want to illustrate the situation
graphically. Have a look at Figure 4.2.
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Figure 4.2: Graphical illustration of the change of coordinates

Now it becomes essential how the location of a; and a; can be derived from the co-
ordinates t, ¢, b;, by. For that purpose we need a direction vector spanning G. As one
can see in figure 4.2 it is for instance possible to obtain that direction by a rotation of
v through an angle (3 + ¢) anti-clockwise. The rotation matrix for that is then:

R — cos(%—l—go) —sin(%+<p)
P \sin(G ) cos(5+e) )

Exploliting that

Ccos <g + cp) = —sin (p)
)= cos(y)

. <7T n
sin ( =
2 (p
we obtain
—sin (¢) —cos (@)
R, = . :
cos () —sin(p)
It is easy to see, that the columns of that matrix form an orthonormal basis of R?. These
considerations enable us to describe the position of both points in the new coordinates:

a,j:t~’v+(R<p~'v)~bj,

=!Vyp

ak:t-v—kfvw-bk.

Finally we should know the functional determinant of the change of coordinates. The
answer can be found in the following Lemma.
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4.2 The Transformation Of Coordinates Under Use

Lemma 4.2.1.
The functional determinant of the transformation of coordinates described above is

d(a;, ax) _ o
e (5ot ) | et =nl

Proof. First we give the representation of a; and a in terms of the new coordinates
once more in detail: 2

o= () [ =) (o))
_ ( t vy + (—sin(p) - vy —.cos(<p)-'02)-bj )
t- vy + (cos () - vy —sin(p) - vg) - b; ’

o)+ (7 22 ()]
_ ( t-v+ (—sin(p) - v —'cos(cp)-vg)-bk )
t-vy+ (cos (@) - vy —sin(p) - vy) - by

Now we are able to determine the corresponding Jacobi-matrix.

(1) v (5) 0
d(ajar) _ | (2) v2 (6) O
a(gpataijbk) (3) vy 0 (5)
(4) v2 0 (6)

With
(1) (~cos () - v1 +sin () - v2) - by,
(2) (~sin(p) - vy — cos (i) - va) by,
(3) (~ cos () - v1 +sin () - v2) - by,
(4) (~sin(p) -2 — cos (i) - va) - b
(5) (~sin () -1 — cos (i) - va) und

(6) (cos(p)-vy —sin(p) - vg).

2Since we argue with powers in the proof, we denote for simplicity the components of v by v; and

vy instead of v', v2.
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Let us think about the determinant of that matrix. We exploit the structure of the
third column and we obtain according to the determinant rules:

(2) v2 0 (1) v, 0
a(aj7ak) = -de v — - de v
det(m)‘“) dt(@) 1 <2>> (6) dt((3> 1 (2)).

For (%) we get:

(—sin () - o1 — cos () - v2) - by - cos (¢) - [(v1)" + (v2)’]
=1

— g [(—cos (¢) - vy +sin () - ve) - by - (cos () - v — sin (@) - v2)
— by, - (sin () - v1 + cos () - v2)°]
= (=sin(p) - 01 —cos(p) - va) - by - cos ()

— vy by [ (cos @) - (01)° — (sin o) - (12)° — (sin ) - (0)° = (cos )’ - ()’

. /

-~

=-1

= (—sin(p) - v1 —cos () - v2) - bj - cos () + vz - by

For (#x) we obtain:

(—cos () - o1 +sin () - v9) - by - cos () - [(v1)" + (v)°]
T/

—v1 [(—cos (¢) - vy +sin () - ve) - by - (cos () - vy — sin (@) - v2)

— by - (sin (¢) - v1 + cos () 'U2)2}

— (= cos (i9) - v1 +sin () - va) - by - cos ()

o b [ (cos ) (00)? — (sing)? - (1)® — (sin)? - (01)° — (cos)? - (1)?]

=-1

= (—cos(¢) - v1 +sin(p) - v2) - by - cos (¢) + vy - by.
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So we have for the determinant in total:
(—sin (@) - v1 — cos (@) - v2) [(—sin (@) - v1 — cos () - v2) - b; - cos () + va - by]

+ (—cos(p) - vy +sin (@) - va) [(—cos () - v1 +sin (@) - ve) - bj - cos (p) + vy - b

. s

= b; - cos () [(—sin () - v1 — cos () - v2)” + (= cos () - v1 + sin () - v2)°]

[y

+ bi [(—sin () - v1 — cos (@) - v2) vy + (—cos () v +sin () - v2) - v1]

(-

— —cos(p)

=b; - cos () — by - cos (¢)

= (b; — by) - cos ().

For —% < ¢ < § holds cos () > 0 and finally we have the proposition

d(a;, ax) _ o
e (5ot ) | et 1 =nl

0

The issue of this chapter was the description of the coordinate transformation, which
we will use in the next section in order to gain the desired upper bounds. In addition
we have calculated the functional determinant. We shall come back to that useful
knowledge in the following.

4.3 An Estimation Of The Probability For Short Edges

The subject of this section is the derivation of an estimation for the probability that
edges have a small length in the context of twodimensional perturbed convex hulls. To
reach that goal we shall we shall orientate ourselves at the approach in [ST04], where
Spielman and Teng derive an analogical probability in the case of higher dimensions.
Therefore we make use of several principles which have been exploited there (e.g. the
coordinate transformation of the last section). However there is one significant differ-
ence insofar as we work with integral formulas that are in a stronger way similar to
those used in the Average-Case Analysis [Bor87] and which do not appear in that form
in the paper of Spielman and Teng. Besides some methodical principles and definitions
of [Ver09] and [Bor87] are incorporated in our considerations

Before starting the theoretical considerations, we have to introduce some basic ideas
and concepts. Here it makes sense to remember that we have got m > 3 twodimensional
random vectors aq, . .., a,, featuring the following distribution:

a; ~ NQ (&i,02E2) .
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For all i = 1,...,m it further holds that ||@;|| < 1 as well as 0 < 11 X That means

that in explicit form each a; has the density function

1 2 _llaj—a;|)”
fz(a'z) = (\/ﬂo‘) "€ 202

Relying on that we look at the perturbed polygon
Y=KH (0,a4,...,a,)

in the rest of this section. Now we shall present some definitions which will turn out
to be helpful and used several times in later considerations.

Definition 4.3.1 (vy).
As known we deal with vectors v,ay,...,a, € R:. WestudyY = KH (0,a4,...,a,,).
Then vy will on that basis denote the point

KK (v)NoY,
which is the intersection point of the ray K K (v) with the boundary of the polytope Y.

Helpful is also the following definition.

Definition 4.3.2 (kante /| Kante).
For v,ay,...,a, € R? let kantey (v) denote the index ° A = {j,k} C {1,...,m}
such that:

1. a; and ay, are linearly independent vectors,
2. KH (a;,ay) is an edge of Y and
3. there are \j, \i, > 0, for which v = \; - a; + A, - a; holds.

If those three conditions cannot be met, then kantey (v) = 0. In case of kantey (v) #
0 then Kantey (v) will denote the edge itself (as a geometrical subject).

In figure 4.3 one finds a graphical illustration for that definition.

kantey (v) = {j, k}

Figure 4.3: Graphical illustration of definition 4.3.2

Finally we give some additional definitions.

3Due to the nondegeneracy assumption there is at most one index set with the required property.
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4.3 An Estimation Of The Probability For Short Edges

Definition 4.3.3 (Ry).
Let R denote the set of all configurations (ay, ..., a,) € R*™ such that

laill <6
holds for allt=1,...,m. More formally Rs can be described as follows:
Rs:={(ai,...,an) ER”™ : |la;|| <& Vi=1,...,m}.

For our perturbation model we can combine that definition with the insight from Lemma
2.2.7 and we realize:

Pl(ay,...,an) ¢ Rs] <

Sh

~—

Events of the form (aq,...,a,,) € Rs resp. (a,...,a,) ¢ Rs will appear frequently in
this chapter, so we are going to simplify the denotation to Rs resp. —Rs . For instance
it holds that

P [(al, .. .,am) ¢ R(;] =P [_|R5] .
The remaining aim of this section is to prove the following Lemma.

Lemma 4.3.4 (small distances).
Let ay,. .., a,, € R? be normally distributed random vectors with a; ~ N5 (@;, 0? - E5)

and with density functions fi, ..., fm. Moreover let ||a;|| < 1. Foralli=1,...,m and

1
o< ) hold. Then

P [(dist (vy, 0Kantey (v)) <€) A Ry | kantey (v) = A] < 4e” - %
for an arbitrary index set A = {j, k} C {1,...,m}, where the random vectors feature

the common density

Hfi (ai)-

The proof of Lemma 4.3.4, which is divided in five steps, requires a lot of technical pre-
cision work. For that reason we give in advance a crude description with the important
points and the obtained results. After that the reader will find the elaborated proof in
detail.

As known we are interested in an upper bound for the probability
P[(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A]

for an index set A = {j,k}. Our approach works as follows:
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Stepl:

First we apply the coordinate transformation from 4.2 on the vectors a; and a; belong-
ing to the index set A. By the way we get the variables ¢, ¢, b;, by. The two values ¢ and
¢ determine the position of the straight line AH (a;, a)) and b;, by, can be interpreted
as the local coordinates of aj, a; in the line. For an illustration have a look at figure
4.2.

Because we are dealing now with the new coordinates t, ¢, b;, b, instead of a;, ai, we
must formulate the interesting events in a new way. Let us start with the set Ry, for
which we know that

Ry ={(a1,...,a,) ER¥™ : |a;| <2 Vi=1,...,m}.

We translate that into a set (), containing all configurations of ¢, ¢, b;, by and a; such
that ¢ # j, k, for which it is true that:

2. |bj‘7‘bk|§4a

This is not a direct translation, but we know that we have an inclusion “Ry; C Q.
This means: For an arbitrary element (ay,...,a,,) € Ry we can find respective values
for the variables ¢, t, b;, by, a;2;, belonging to the set ) . Using these variables we are
able to display and describe the original vectors a, ..., a,,.

Besides we formulate in the first step the event appearing in the probability formula
dist (vy,0Kantey (v)) < € using the new variables. We understand that under the
condition kantey (v) = A it holds that:

dist (vy,0Kantey (v)) <e & [bj| <eV |b| <e

Furthermore we can reformulate the condition kantey (v) = A following the same
ideas by use of the variables ¢, t,b;, by, @z i

t>0,
kantey (v) =A < < (b <OAb,>0)V (b; >0Ab; <0) and
(w,a;) <t-cos(p) foralli#j k.

Here w is the normal vector on the straight line AH (a;, a)) and ¢ is the angle between
w and v. Based on the introduced translation we may formulate a relation between
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4.3 An Estimation Of The Probability For Short Edges

the original probability and the new formulated probability using ¢, t, b;, by and a;x; i
P[(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A]
<P|bj| <eV]b| <e)AQ| (b <OAD,>0)V (b >0Ab, <0))A
A((w,a;) <t-cos(p) Vizjk)A(t=0)
=P[(|bj| <eV]|be| <e)AQ| ((bj SOAb, >0)V (bj >0Ab <0))A
A((w,a;) <t-cos(p) Yi#j k)Nt >0)].

The inequality comes from the inclusion “Ry; C (7. So we have achieved the goal of
the first step.

Step 2:

In the second step we mainly deal with the question, how the common density of the
variables ¢, t, b;, by, which originate from a; and aj, can be expressed. The densities
of a; and of a; are according to the asumption of normal distribution

1 \? laj—a,12
filag) =\ —=| e 2%
2no

2 )
fk(ak):( 1 > .€7||‘1k202 I

2mo

and ||@;||, ||lax]| < 1. Having a look at both density functions, one detects that the
essential point is to express the quantities ||a; — @;||? and ||ay — @x||*. Figure 4.4 may
help to understand this relation and this wish.

ay (perturbiert)

I
" -~
aj, (original)

Figure 4.4: Useful illustration for the replacement of original by perturbed vectors

It can be seen that in order to determine |la; — @x||> one can concentrate due to the
theorem of Pythagoras on the size of |laj, — c‘z;ﬁLH2 and ||a; — dk||2. For the term
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|lar — @z || we see after some considerations, that
la — @i ll = [be — i |.

Here by, denotes (analoguosly as for b;) the local coordinate of @;- in the straight line
AH (a;,ay;). Moreover we can show that

lai — @xll = [t cos () — (w, @) |.
In the case of the second vector the analogous result follows.

la; — a@;|* = (b — b;)* + (t - cos () — (w,@;))*.

Informally written, we get as reformulations for the density functions of a; and ay:

1\ eam? (o) (wap)?
fk(a'k) — .e 202 .e 2052

2ro

1 )2 L 0h)® (teos(p)—(w,3)))2
e .

fila;) = (— w2 e 27

2ro

Now take into regard that we know the functional determinant cos(y) - |b; — by | for
the change of coordinates from 4.2. Then the common density of the new variables is
in exact formulation:

1 ! — (bi_Bi)Q o (t'COS(w)—(w,ai))Q
g((p’t’ijbk) = (\/%0> ~COS(‘P)' ‘bj_bk‘ . H e 22 ¢ 252 .
ie{j,k}

This settles the essential issue of the second step. Since we want to evaluate the
probability under consideration in more detail, the following insight is important. For
an arbitrary configuration of 0 <¢ <2 and —7 < ¢ < 7 it holds that

515 <3
This will be assured at the end of this step, too.

Step 3:

At the beginning of that step we reformulate the representation of the desired proba-
bility from step 1 once more. Now it will be written as a sum of four summands. So
the new formulation is:

P(|bj| < eV b <€) AQ| ((b; SOAD > 0) VI (b; > 0A b, <0)) A
A({w,a;) <t-cos(p) Vijk)A(t>0)].
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4.3 An Estimation Of The Probability For Short Edges

Due to the two grand or-symbols (emphasized in gray) we can estimate the probability
by a sum of four separate probabilities

P01 <) AQ| (bj SONb = 0) A
A ((w,a;) <t-cos(p) Vi#j k)A(t>0)] (4.1)

+P[(|bx ]| <e)ANQ| (b KOAb, > 0)A
A({w,a;) <t-cos(p) Vi#j, k)N ({t>0)] (4.2)

+P[(|b;] <e)AQ| (bj >0Ab, <0)A
A((w,a;) <t-cos(p) Vi#j,k)A(t>0)] (4.3)

A((w,a;) <t-cos(p) Vi#j,k)A(t>0) (4.4)

This is the first important point to be clarified in step 3. The second point consists
of the guarantee, that for the conditions appearing in the two probabilities from above
the listed estimations hold:

P(b; <OAby > 0) A ({w,a;) <t-cos(p) Vi#7,k)A({t>0)]>0
and
P[(b; > 0Ab;, <0)A ((w,a;) <t-cos(p) Vi#j k)N ({t>0)]>0.

Hence it is clear that the four conditional probabilities from (4.1) to (4.4) are defined
well. For that purpose we obtain for the first probability (the second shall be treated
likewise) the integral formula

( 21m>/ 7 7 / 11 / I [(w,a;) <t-cos(p)] fi(a)da,

00 Z#jvk R2

[SE]

(b;—b)? (t-cos() — (w,a;))?
ccos(@) b bl [[ e - [[e = dbydbedtdy

i=jk i=jk

We can show that it has a positive value by deriving an estimation from below. The
result implies

P[kantey (v) = A] > 0,
which guarantees that the conditional probability in Lemma 4.3.4 is reasonably defined.

This question had not been discussed so far.

Step 4:

In this step the probabilities from (4.1) to (4.4) will be evaluated separately. We study
only the first, because the others can be treated essentially in the same way. For the

85



4 Smoothed Analysis Of Polyhedra In Dimension 2

estimation we first derive an integral formula giving an upper bound. Since this is a
conditional probability, we obtain a quotient:

PI([oj ] <) AQ| (bj SONb = 0) A
A((w,a;) <t-cos(p) Vi jk)A(t=0)

/0/20/4/0 iQkH!]IK“”% <t cos (¢)] fi(ai)da
/ZZZ gkﬂg/ﬂ (@, ai) <t -cos (¢)] filai)da

5.2 (t-cos(p)—{w,
ccos (@) - [by—be| - [L e o -] e S e by dbdi

= (bi_Bi)2 = (t-cos( (w,a; : (45)
ccos () - |bj—bi|- [T e = -] e - (tete et db dby dt dp
=7,k =7,k

Now we can apply the result from step 2, that } Ej ’ , ’ by ’ < 3. This makes it possible
to bound the quotient in (4.5) from above by the strongly simplified term

4 0

502
//\b]—bk [T e " dbs

0 i=j,k

\b7ku|<3
//|b by
i=j,

k
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4.3 An Estimation Of The Probability For Short Edges

For further evaluations let the values of Ej, b, with ’ Ej ’ , ’ by ’ < 3 be arbitrary. Then
we can show the estimations

4 0

_(b=by)?
[b; — b |- [[ e =7 dbjdby
0 —e i=j:k
co 0
_(b=b)?
10— b |- [ e = dbjdby
0 —o0 i=j,k
4 0
12 _ (b =by)?
ORI P |b; — by | db;dby,
sup e 202 J J
—e<b; <0 0 Ze
— (b;—b;)2 4 0 ’
inf e 22 (b —by)?
—to<b; <0 /6 202 / | bj — bk | db]dbk
(*) 0 —to |

(%)

The value t, satisfies ty > €. A detailed study of (*) delivers a constant upper bound e°

and for (#*) similar thoughts lead to the estimation 5. In total we obtain as a result

for the probability (4.1):

Pl(|b] <e)AQ| (b; < 0D > 0)A

A({(w, @) < t-cos(p) Vi k)A(t>0)] < —.
o

For the remaining three probabilities (4.2), (4.3) and (4.4) analogous methods deliver

the same upper bounds.

Step 5:
This final step summarizes the different partial upper bounds. So we get as result:
. €
P [(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A] < 4e” - e

This is just the proposition of Lemma 4.3.4.

Now we have announced the essential steps in the proof of Lemma 4.3.4. In the rest of
this section we are going to explain the details.

Before starting with the elaborate proof of the Lemma, we state an auxiliary result
about conditional probabilities.

Lemma 4.3.5.
Let A, B,C' be events such that P [B],P[C] > 0. Then

P[A|BV ] <P[A|B] +P[A|C].
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Proof.
P[AA(BVC)]
P[BV (]

P[(AANB)V (AAC)
P[BV (]

P[AAB] P[AAC]
P[BvC]  P[BVC]
P

[ANB] P[AAC]
-  P[B] P[C]

—P[A|B]+P[A|C].

P[A|BVC| =

<

This proves the proposition. O
Now let us start with the proof of Lemma 4.3.4.

Proof of Lemma 4.3.4.

We want to make some remarks about the concept of the arguments following: Ev-
erything is listed in extremal detail. To keep the clarity anyway, we have subdivided
the proof in several steps as apparent. Further some considerations are combined in
Lemmata. They should not be seen as isolated statements, but only be interpreted
under the present context.

Let an index set A = {j,k} C {1,...,m} be given. Our aim is the derivation of an
upper bound for the probability

P[(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A]. (4.6)
Step 1:
The essential points in this step are:

e [irst we apply the coordinate transformation from 4.2 on the vectors a;, a;. So
we obtain a representation using the variables ¢, ¢, b;, by.

e After that we translate the event Rs in the language of the new coordinates.

e Then we formulate dist (vy, 0K antey (v)) < € as well as the condition kantey (v)

A by means of the new variables.

e Based on these considerations we find a formulation of the probability in the new
variables.

Let us apply the coordinate transformation on the vectors a; and aj. As known the
position of straight line AH (a;, aj) is determined by the ¢ and ¢ and b;, by, can be seen
as the local coordinates of a;, a; in the line. Have a second look at the representation
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4.3 An Estimation Of The Probability For Short Edges

in figure 4.2. We are going to derive ranges for ¢, ¢, b;, by, implicated by the event R..
Here we rely on the proven fact that the event kantey (v) = A is valid.

The above mentioned condition justifies to concentrate on those configurations of a; and
ay, for which v is directed towards the straight line AH (a;, ay). Hence we have ¢t > 0.
Moreover we are allowed to assume that v € KK (a;,a;) & KK (v)NKH (a;,a;) #
(). This enables us to derive a further estimation for the variable ¢: Because of the
event Ry both ||a;|| < 2 and |lak|| < 2 are satisfied. Hence it is clear, that also
|IKK (v) N KH (a;j,a;)|| < 2. On the other hand ¢ is always chosen in a way that
t-v=KK (v)N KH (aj,a;) holds. Combined with ||v|| =1 we have the estimation

2> ¢l = t- o] =t

For the set [—g , %) of possible values for the variable ¢ we cannot make further
restrictions. Anymore it is clear that ||a;|| < 2 Vi # j, k remains valid. Now we should
think about the possible values of b; and b;,. For that purpose we remember that we had
derived a representation of a; resp. a; in terms of the new variables in the course of

the introduction of the coordinate transformation in section 4.2. This gives for ¢ = j, k:
a;=1-v+uv,-b.
Rearranging leads to

Vo b =a;—t-v

and so
lv - bill = lla; =t - v]|
< [lail] + It - ]|
< flaif] + - ]l (t=0)
<2+t (laill <2, [lvll = 1)
< 4. (0<t<2)
Inclusion of ||v,| =1 in our consideration finally delivers |b; | < 4.

In total we see the “inclusion of sets”:
Ry = {(al,...,am) cR¥™ : |la;]| <2 Vi= 1,...,m} C Q,
where @ is the set of all configurations of ¢, ¢, b;, by and a; mit ¢ # j, k such that:
L |la;]| <2 Vi#j,k,
2. 06|, bk | <4,

3. =5 < ¢ <7Zand
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4. t < 2.

Our point 4 lacks the condition ¢ > 0. This has the reason that this restriction resulted
from the kante condition and not from focusing on R,. For that reason we do not
want to rely on ¢ > 0 in @), but instead in the following reformulation of the kante-
condition in the new variables. The inclusion mentioned above should be understood in
the following way: For an arbitrary realization (a1, ..., a,) € Ry we can find respective
values for the variables ¢,t,b; and by, which belong to the set () and which enable a
representation in the form

ai:t"v+’v¢'bi
for i = 7, k. For all other points a; everything is clear.

At the end of step 1 we are going to formulate dist (vy, 0K antey (v)) < € as well as
the condition kantey (v) = A by means of the new variables. Here we observe: In the
straight line AH (a;, a)) the new origin is vy. Further we know

vy € KH (aj,a;),vy # aj,a; and

kant =A &
antey (v) { KH (a;,a;) is an edge of Y.

Combining both findings it becomes clear that we may replace
vy € KH (a;j,ar) \vy # aj, a;
in the original coordinates by
0€ KH (bj,b;) A bj,by#0 A t>0

in the new variables. In addition we see that K H (a;, a;) becomes an edge of Y exactly
if all other points a; are located on the same side of the straight line AH (a;, a;) as the
origin. We can simply express that condition, if we remember that the angle between
normal vector w of the straight line and v has value

arc (w,v) = ¢,
as we know that the point ¢ - v lies on the straight line. So we obtain:

KH (aj,ay) is an edge of Y
=
(w,a;) < (w,tv) =t -(w,v) =t-cos(p) foralli#j k.

Remark 4.3.6.

At this point we see, that the event depends on the values ¢, t, which determine the
position of the straight line, and on the vectors a; with ¢ # j, k. The local variables
in the straight line b; and b; do not have any relevance. This fact will turn out to be

helpful.
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Moreover the coordinate transformation yields
dist (vy,0Kantey (v)) = dist (0,0KH (b;,by)) .

After the considerations made so far we obtain the following upper bound for our
probability in new variables:

P[(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A]
(S) P[(dist (0,0KH (b;,b)) <e)ANQ| (0 € KH (b, b)) Nbj, b, #0 A
A ({w,a;) <t-cos(p) Vi#j,k)A({t>0)].
Inequality (*) results from the fact Ry C @) discussed above. Now we have a first formu-

lation for the probability in new variables. It is possible to do one more simplification
by exploiting the following two equivalencies:

dist (0,0KH (b;j,by)) <e < |bj|<eV |b|<e
and
0e€ KH (bj,br) N bj,b, #0 < (bj <OAb, >0)V (b; >0Ab, <0).
This makes an important reformulation possible

P [(dist (0,0K H (b;,b,)) < €) A Q| (0 € KH (b;, b)) A
A({w,a;) <t-cos(p) Vi#j k)A(t=0)

=P[(|bj| <eV|b| <e)AQ| ((bj <OANb, >0)V (bj >0Ab, <0))A

A((w,a;) <t-cos(p) Vi# g, k) A (= 0)
(:)P[(|bj|§ev|bk|§e)AQ| ((bj SOAbL,>0)V(b; >0Ab, <0))A

A({w,a;) <t-cos(p) Vi#j, k)N ({t>0)].

The equality () results from the null-set property of b; = b, = 0 under our stochastic
model. So we have carried out a specific coordinate transformation and have formulated
the probability in new variables. This was the goal of step 1.

Step 2:

In the first step we have tried to express the probability in question in terms of the
new variables. In order to evaluate that expression we have to work with an integral-
formula. We now concentrate on the question: How can the common density of a; and
a;, be expressed in the new variables? For that purpose it makes sense to remember
the representations for a; and a;, from section 4.2:

a;=t-v+uv,-b, (4.7)

ak:t-v—kfvw-bk.
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To continue we shall determine the normal vector w on the straight line AH (a;, ay)
based on these considerations: Both vectors w and v are of length 1 and the vector
w results from v which is rotated by the angle ¢ anti-clockwise. With the help of the
insights of section 4.2 we obtain for the respective rotation matrix:

i (cos«o) —sin (p) )

~ \Usin(p)  cos ()

@)

So we have:

w- R, - ( cos () —sin () ) (v; ) _ ( v! cos (ip) — v*sin () )

sin () cos () v o' sin (p) + v* cos ()

On that fundamentum we aim for a formulation of the density functions f;, fi of a;
and ay, in terms of the variables ¢, ¢,b;, b;. In addition we want to make some trans-
formations and estimations which will turn out to be useful for the evaluation.

Let us have a look at the density of a;. It is:

fila;) = <;)2 el

2ro

It is getting clear that it will be essential to know the formulation of ||a; — a,||* by use
of the new variables. Here the illustration in figure 4.5 can be helpful.

aj, (perturbiert)

t<

/
& -~
a;, (original)

Figure 4.5: Useful illustration for the replacement of original by perturbed vectors

Looking on the drawing in figure 4.5 we see that @; is projected orthogonally on the
straight line through a; and a;. This generates the point c_le. Since this is a point on
the line, it can be represented in the form

dj*:t-v—kv@-gj (4.8)
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for a Ej as it is known for a; and aj. Our construction permits the application of the
theorem of Pythagoras:

_ _ 2 _ _ 2
la; — a;||* = lla;, —a; | + lla; —a,l|" (4.9)

Now we try to express the figures ||a; —C_Lj‘ | and ||@; —@,]| in terms of the new variables.
For ||a; — d;‘ || this is easily possible, as a calculation shows. We use the representations
for a; and for a; from (4.7) and from (4.8):

la; — a5l =l(t- v +w, - bj) = (t-v+ v, b))
= [[ve - b — vy byl
= llvy - (bj — b))
= [b; = b;| - [lvgll
-5
The last equation relies on the obvious fact ||v,| = 1. Now we concentrate on the term

|@; — @;|| in new variables. This is less simple. Looking at figure 4.5 we see that

for a certain factor u. A simple consideration leads us to :
U= <waa’j> - <w76’j> = <waa’j - dj)'

We can certify the validity of that result simply, because a calculation shows that the
point @; + (w, a; — @;) - w is located on the straight line AH (a;, ay):

(w,8; + (w,a; — a;) - w) =(w,a;)+ (v, (w,a; — a;) - w)

>.
= <w>a’j> + <w>a’j - aj) ’ <waw>
1

= <w7a’j> + <w7a’j> - <w7a’j>

= (w, a;).

This leads to a new representation for ||@; — a;||:

la; —a,ll = l|a; + (w.a; - &) w - @l = [(w,a; - @)) |- |w]| = | {w.a; — @) |.
Again we have taken into regard that |w|| = 1. In total we conclude:
la; —ajll* = (b; — b)* + (w, a; — @;)*. (4.10)
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In the above expression (4.10) the vector a; still occurs. This should be represented
by use of the new variables, too. Therefore we use the well-known representation
a; =1t-v+v,-b; and we insert it into (w, a; — @;). So we obtain:

(w,a;—a;)* = (wt-v+v, b —a)°
= (t-(w,v) + (W, v, b)) — (w,a;))*
= (t-cos(p) +b; - {w,v,) — (w,a;))°
= (t-cos(p) — (w,a;))".
Finally we have:
la; —a;]|* = (b; — b;)* + (t - cos () — (w, @;))*. (4.11)

Remark 4.3.7.

The term (¢-cos (¢) — (w, @;))? could be evaluated even more precisely. But having our
further aims in mind for us only the following insight is relevant. Only the variables ¢
and ¢ will appear and b; resp. b, will not appear.

If we make use of equation (4.11), then we get a formulation for the density funtion of
a; in terms of new variables:

filag) = f;(t - v+v,- b))

1 \2 05>t (tcos(p)—(w.a;)?
= -e 202
2mo

1 \?2  _e5p® eosto)-(way)?
= -e 202 -e 202 .
2mo

Analogously we get for ay:

fk(ak) = fk(t - v+ vgo . bk)

1T \2 eab?  (teoste)—(way)?
= . e 202 . e 202 .
2ro

Besides in section 4.2 we have calculated the functional determinant of the coordinate
transformation. Taking its value cos(p) - | b; — by | into regard, we can conclude that
the common density of a; and a; expressed in new variables is:

1 1 C(b=bp? (tcos(p)—(w,a;))?
g(gpatabjabk) = (\/%0'> 'COS(QD)' ‘b]—bk‘ . H e 202 . e 292 )
1€{j,k}

Now we have achieved the main goal of step 2. Nevertheless we want to study the
variables b; and b, even more precisely. Their specific values are in spite of the fixed
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centers a;, a; still variable, since the projections &J.L and di depend on the values ¢
and ¢. One more look at figure 4.5 will confirm that insight. Motivated by that remark,
we shall give estimations for both variables.* They will prove useful in the evaluation
of the probability.

Lemma 4.3.8.
For an arbitrary configuration of 0 <t < 2 as well as —5 < ¢ < 7 it holds:

] e <3

Proof. Let us look at representations for a;, &jl and @; on the basis of the normal
vector w to the line AH (a;,ay) for certain, but not explicitly specified values ¢;, ¢;
and r:

aj =5 -w+cj-v,=(t-cos(p)) w+c;- vy,
Gy =5 w+¢ v, =(t-cos(p)) w7 vy,

a; =71 -w-—+Ccj- v,

€L

The factor ¢; appears both in a; and in aj, since

a; =a;+ (t-cos(p) — (w,a;)) - w

and besides w L v, hold. Moreover we can with the help of w L v, also conclude

la;]* = r* - flwll® + (&) - lvgll” =72+ (&))°.
Combined with the condition ||@;|| < 1 we obtain:

()P <1-r*<1, (4.12)

That perception can be exploited for gaining another estimation. Therefore we need
the two alternative representations.

'_

a; =t-cos(p) w+¢- v,

&j:t~v+l_9j~v<p.
Herefrom we get the system of equations:
t-cos(p) w+e&- v, =t v+0b; v,
Take l_)j - v, on one side:

bj v, =1-(cos(p) w—v)+¢- v,

4 Spielman and Teng use and derive for the evaluation of the probability also such an estimation.
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This leads to
|0 | = [bj | - llvgll
= b - vl
= [t (cos(p) - w —v) +¢; - v,

< [t~ (cos () - w — )| + ¢ - vy

= t-|lcos(¢) - w =l + ]| [lv| (since ¢ > 0)
= t-|lcos(p) - w =l + 5] (since [lv,[| = 1)
< t-llcos(p) - w—v|+1 [compare estimation (4.12)]
< t+1 (*)
< 3. (since t < 2)

Estimation (x) is valid, since

lcos (¢9) - w — vl = \/{cos () - w — v, cos () - w — v)

— \/(cos @)2 (w,w) —2cos (¢) (w,v) + (v, v)

= \/(cos ©)’> —2(cos)’ +1
=y/—(cosp)® +1

= [sin () |
<1

Analogously this estimation can be deduced for b;. For an arbirary configuration -5 <
¢ < 5 and 0 <t <2 also holds

|6

b | < 3.

I

This shows the validty of the Lemma O

Remark 4.3.9.

We want to remark once more that djl, a; and in consequence b;, by, depend on the
specific values of ¢ and t. For the purpose of the desired evaluation of the probability
we are not interested in the specific values. In contrast we work for simplification with
the estimation presented above.

The essential issue of this step was the formulation of the probability using the new
variables. Besides we have obtained a useful estimation for the values b; and by. Let
us go to the next step.
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4.3 An Estimation Of The Probability For Short Edges

Step 3:

The main goal of this step is to transform the probability-representation in new vari-
ables once more and to subdivide it into single summands. These single summands
should permit an evaluation. In addition we will have a second look at the condition
kantey (v) = A resp. its new formulation. We shall show that this condition is ful-
filled with positive probability. This will be essential and necessary, because we want
to condition on events of that kind.

The present available formulation for the probability resulting from step 1 is:

Pl(|bj| <eV]|bp| <e)AQ| ((bj SOAb,>0)V (b; >0Ab, <0))A

A({w, @) <t-cos(p) Vi j,k)A(t>0). (4.13)

The findings from step 2 allow us to give an evaluable integral expression for the proba-
bility mentioned above (4.13). But in order to make the notation and the estimations a
bit easier, we are first going to make some reformulations. First consider the condition
in the probability and write it down in the following way:

((bj SOAb>0)V(b; >0Ab <0))A((w,a;) <t-cos(p) Vi#j k)N (t>0)

V(
= [(b; SOAb > 0) A ({(w,a;) <t-cos(p) Vi#jk)A(t>0)]
<0

(
VIb; >0Ab, <0)A ((w,a;) <t-cos(p) Vi#jk)A(t>0)].

This enables us to apply Lemma 4.3.5 and to conclude for the probability in (4.13):

IP’[(|bj|§e\/|bk|§e)/\Q‘( (b <0Abe > 0)|v[(b; = 0Ab, <0)])A

A ((w, a;) < t-cos(p) Vi;éj,k)/\(tzo)]

<Pt < eV bl <) nQ|[(b < 0AB > 0)]n

A ((w, @) < t-cos (¢) Vi?éj,k)/\(tzo)]

+ P[(|bj\§ev\bk|§e)/\62‘ (b; > 0 A by < 0)|A

A ((w, @) <t-cos(p) Vi k)A > 0)].
Both probabilities can be bounded from above another time:

Pl(|bj| <eV]|bp| <e)AQ| (bj <OAb >0)A
AN({(w,a;) <t-cos(p) Vi g, k) A (= 0)

SP(|bj | <€) AQ| (b SONb = 0) A ((w,a;) < t-cos(p) Vi#j k)A(t=0)
+P[(|be | <e)ANQ| (b SOANb, > 0) A ((w,a;) <t-cos(p) Vizjk)A({t>0)
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4 Smoothed Analysis Of Polyhedra In Dimension 2

as well as
Pl([oj] <eV]b]| <e)AQ[ (b = 0Ab <0)A
A({w,a;) <t-cos(p) Vi#jk)A(t>0)]
<PI(b1<OAQ| (b= 0Aby SO)A ({w,a) < t-cos(o) Vi #5,k) A(t > 0)
+ P[0 <) AQ| (b 2 0Ab 0) A ((w,a;) <t-cos(p) Vi jk)A({=0)].
In total we have the upper bound :

Pl(|bj| <eV]|bp| <e)ANQ| ((bj SOAb,>0)V (b; >0Ab, <0))A
A{w,a;) < t-cos(p) Vi jk)A(t>0)]

<SP0 <e)nQ| (b SOAb, = 0) A
A({w,a;) <t-cos(p) Vi#jk)A(t>0)] (4.14)
A({w,a;) <t-cos(p) Vi#j,k)A(t>0) (4.15)
+P[(|b; ] <e)AQ]| (b >0Ab, <0)A
A({w,a;) <t-cos(p) Vi#j,k)A(t>0) (4.16)
A({w,a;) <t-cos(p) Vi#jk)A({t>0)]. (4.17)

Each of the four probabilities in (4.14) up to (4.17) will be estimated in step 4. During
the rest of the third step we want to think about a fact which has not got into the focus
so far. As known, our essential aim is an estimation for the probability

P[(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A].
Here we meet a condition on the event
kantey (v) = A

with A = {j, k}. The definition of that probability is according to this reasonable only
if the event occurs with positive probability. We want to ensure that this is the case.
Using the change of variables we have already obtained the reformulation for this event:

kantey (v) = A

&
(b <OAbL >0)A ({w,a;) <t-cos(p) Vi#j k)A({t>0)]V (4.18)
VI[(b; >0Ab, <0)A((w,a;) <t-cos(p) Vi#7 k)N (t>0)]. (4.19)
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4.3 An Estimation Of The Probability For Short Edges

The term in (4.18) appears just in the two first of the four probabilities and the term in
(4.19) appears in the two last ones. The splitting in the partial conditions (4.18) and
(4.19) is a consequence of the application of Lemma 4.3.5. To make the application of
that Lemma possible, we have implicitly presumed that

IN
v

P[(b; <OAb > 0) A ((w,a;) <t-cos(p) Vi#jk)A(t

0
=P[(b; <OANb, > 0) A ((w,a;) <t-cos(p) Vi#jk)AN({E>0)] >0

IN

and

P[(b; > 0A b, < 0) A ({w, a;)

IN

t-cos(p) Yi#j,k)A(t>0)]
0

=P[(b; > 0ANb <0)A ((w,a;) <t-cos(p) Vi#7k)A(t>0)] > 0.

IN

Now we want to assure that this is actually the case. A direct consequence is then

P[kantey (v) = A] > 0,

So the probability has a meaningful definition. The following estimations are again
summarized in an own Lemma.

Lemma 4.3.10.

So far we have

P(b; <OAb, > 0)A ({w,a;) <t-cos(p) Vi#7,k)A({t>0)]>0

and

P(b; > 0Nl <0)A ((w,a;) <t-cos(p) Vi#jk)A({t>0)]>0.

Proof. For the proof we formulate the integral representations for the probabilities in
question. Afterwards we demonstrate that their values are strictly positive.

The considerastions made so far directly permit a representation and an estimation for
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4 Smoothed Analysis Of Polyhedra In Dimension 2

the first probability.

P[(b; <OAb, > 0) A ((w,a;) <t-cos(p) Vi#j.k)A({t>0)]

() ]

(t-cos(p)—(w,a;))”
ccos () - | b — by | - H o~ H o I iy dbdi

/ (.d, CLZ‘> S t - cos ((,0)] fz(al)dal

xIV
Y
[;]3 —
Q
N————
IS
—
o\

ccos (@) [ —be |- [[ e [ e %" dbydvpdedg  (4.20)

=7,k =7,k
E 2 oo O
1 4
> : inf /]l w,a;) <t-cos i(a;)da; ////
<ma) y it [ 1w.a) ()] fil
7 o<t<2 R2 Sz 00 oo
(b;—b;)> (t-cos(p)
COS (%0) . ‘b] — bk‘ . H e 202 H e = ‘920 db dbkdtd@
i=J,k i=j,k
1\ 3
> : inf /]1[<w, ;) < t-cos(p)] fila;)da; ////
(%) (\/271’0') Z}é_jlk —-5<e<3
’ o<t<2 R2 -z 0 -3

(t-cos(p)—(w,a;))”
cos () - 1by —be |- T e [ e “™ 5™ dbydvydtdg. (121)

i=j,k i=j,k

The estimations labeled with (x) base upon a diminishment of the integration range.
This is possible, since for all feasible values of ¢, t, b; and by, the integrand will stay to
be nonnegative.

The following considerations help us to show that the main integral in (4.21) has a

positive value. We start by showing that the integrand is positive everywhere in the

integration range. For that purpose it is sufficient to clarify that each of the factors

remains positive everywhere. For the first and the second factor it is easy to see that:
e The values ¢ € [—Z, %] lead to cos (@) > 0.

e For b; € [-3,—1] and b, € [1, 3] one obtains | b; — by, | > 0.
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4.3 An Estimation Of The Probability For Short Edges

Looking at the third factor we remember that } b } < 3 and } & } <3. In cor_nbination
with the feasible values for b; and by, this leads to (b; — b;)? < 36 and (b — by)? < 36.
So we have:

_(b=bp? 36\ 2
He 252 Z(e 202> > 0.

For the fourth factor we remember the following facts:
¢ 0<t<2

e 0<cos(p) <1firpe |-

J:

03|>~1

3
o |lw]=1,
o [la;, [l <1.
Hence (- cos (p) — (w, @;))? < (2+1)° = 9 for i = j, k. This implies
(t-cos(p) = (w,d;3))? _9\2
H e = > <e 202> > 0.
=7,k
Combining all these partial results, we see that the figure
_(bi=by)? _ (t-cos(e) = (w,d3))?
COS((,O)‘|bj_bk|'He 202 .He 202
i=j,k i=j,k

from our integral is always positive. In a second step we realize that the set M of those
(p,t,b;,by), in our integration area, can be written as follows:

3

ST 0<E<2 -3<h <1, 1< <3}

M:{(cpvtvbﬁbk) : 3

w|>l

This set M obviously has a positive Lebesgue-measure, hence the integral is positive in
toto.

In a further step we look at an arbitrary factor of

| it / 1w, @) <t - cos ()] fi(ai)da; (4.22)

—£<90<—
ik 2 — 2
Z#]? 0<t<2 R2

and we show that this is positive. Let ¢, ¢ and ¢ from the expression above (4.22) be
chosen arbitrarily but fixed. We study

/]1 (w,a;) <t-cos(p)] fila;)da; =P[(w,a;) <t-cos(p)] (4.23)

RQ
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4 Smoothed Analysis Of Polyhedra In Dimension 2

and keep in mind that a; ~ N5 (@;, 0% - E5) with ||@;]] < 1. Since ¢ can now be seen
as a fixed value, w turns out to be a fixed vector. Moreover ¢ - cos (¢) is a fixed value,
for which 0 <t-cos(¢) < 2 holds. Prior to estimating the probability (4.23), we make
a small but helpful modification. First we form the matrix B := (w, 1), where the
vector m is chosen in a way that it forms an orthonormal system together with w of
R2. In place of a; we shall study the transformed vector b; := B ~1.a;. From Lemma
2.2.2 we deduce that b; = (b}, )7 1s normally distributed with expectation vector

b, := B~'-a,; and covariance matrix o2 B"'E;B~ ! = ¢2. E,. In addition because of
(w,a;) = (B"'w,B'a;) = (B"w,b;) = b;

we have the equality
P[{w,a;) <t-cos(p)] =P [b; <t-cos(p)].

Our knowledge about the distribution of b; leads to the integral representation :

tcos 1 1)2
P [bll <t-cos( / alb1
27ra
Moreover
1b;]] = | B™'a,|| = [|a,]| < 1.

This delivers b} < 1. In combination with 0 < ¢ - cos (¢) < 2 we obtain

t-cos(yp)

v/ 27T0

G 1_b1)2 (b1_1)2
db1 / db1

27?0

1 (b1—1)2
> / db; > 0.
27TJ
—1

Now we see that each factor of the product (4.22) is positive and so is the product, too.
In total we recognize that for the probability under investigation

P[(b; <OAb, > 0) A ((w,a;) <t-cos(p) Vi#7k)A({t>0)]>0

holds. This proves the first part of the Lemma. For the second probability we obtain

102



4.3 An Estimation Of The Probability For Short Edges

as representation and estimation:

P[(b; > 0Ab, <0)A ({w,a;) <t-cos(p) Vi#j k)N ({t>0)]

™

()" /[ /](n

S0 o0 \FER

/ (.d, CLZ‘> S t - cos ((,0)] fl(az)daz

(t-cos( (w,
H o~ et db; dby dt dp

i=j,k i=j,k
2( 217ra)4/0/22070 igkﬂg]l[@,aﬁSt-cos(so)]fi(ai)dai

-b;)

ccos(@) [y —be |- [ e T e 5™ dbydvedtdy.  (4.24)

=73,k i=j3,k

From this one can analogously show that the probability is strictly positive. This proves
the Lemma. O

In this step we have transformed the fundamental probability once more and we have
split it in separate summands. For these summands we shall give upper bounds. In
addition we have investigated the condition kantey (v) = A in detail and by the way
we have justified the applicability of Lemma 4.3.5. So we proceed to the next step

Step 4:

The goal of the fourth step is the estimation of the four probabilities (4.14) to (4.17).
Let us start with the probability in (4.14). For its evaluation we prove the following
Lemma.

Lemma 4.3.11.
On the basis of our arrangements we know:

PI([6; | <€) AQ| (bj SOAb = 0) A
A({w,a;) <t-cos(p) Vi#jk)A{E>0)]<e —.
Proof. Let us write the probability like that:
P16 <) AQI (b <ONDE = 0) A ((w,a;) < t-cos(p) Vi jik) A(t=0)]
Pl(|bj| <e)AQA (b SOAb, >0)A
P(b; <OAb, > 0)A

A((w,a;) <t-cos(p) Vi#j,k)A(t>0)
A({w,a;) <t-cos(p) Vi k)A{E>0)]
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4 Smoothed Analysis Of Polyhedra In Dimension 2

An integral representation for the denominator had been derived above. Still missing
is such an integral representation for the numerator. For simplification we make some
small modifications.

At the moment, the set @) in its original form is not perfect for our purpose. Therefore
we drop the conditions for those a; with i # j, k and we receive the set )’ with

™
Q' = {(p,tbis b i) ¢ —5 S < T E<2, b <4, (b <4

N[N

Obviously @ C @Q'. We obtain for the numerator in (4.25):

Pl(Jbj| <e)AQA(bj SOAb, > 0) A ((w,a;) <t-cos(p) Vi#j,k)A(t>0)
<P[(|bj| <e)AQ A(b; <OAb, > 0) A ((w,a;) <t-cos(p) Vi#j k)A({t>0)]
P

(11 <AO<t<2A(D; ]| <4)A(|be] <4)A (b <OADE > 0)A
A ((w,a)) < t-cos(p) Vi j k)]

SPI0 | <e)N(0<t<2)A(|br| <4)N(b; <OAb>0)A
A ((w,a;) <t-cos(p) Vi# k)l
=P[(—e<b; <OANO<t<2)AN0< b <4) A ((w,a;) <t-cos(p) Vi k)

In order to understand why the equality in (x) holds, it pays to reconsider the statement
of Lemma 4.3.4. Here we see that we may assume that € < 4, since for € > 4 the given
upper bound is trivial. We give an integral expression for the last probability in the
chain of estimations.

Pl(—e<b; <OANO<t<2)AN0<b, <4 A ((w,a;) <t-cos(p) Vi#j, k)

- (ﬂl_m)//// [T [tlw.a) <t cos(0)] @) da

% —€ Z#Jvk R2

_(bi=by)? _ (tcos(p)— (w.a;)?
wcos () [b —bi| - L e =t ] e 22 dbjdbdtdp.  (4.26)

i=j.k i=j,k
Now we can estimate the probability (4.25) by means of the integral representation
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(4.26) for the numerator and of the above derived figure (4.20) for the denominator:

Pl(|bj| <e) ANQA (b <OAb, >0)A
P(b; <OAb, >0)A

A({w,a;) <t-cos(p) Vij,k)A(t>0)]
A((@, @) < 1 cos(g) Vi £ 4 k) A (> 0)]

////0 H /]levai)St'COS(tp)]fl-(ai)dai

— —€ Z#]vk‘ R2

/0 [T [1lw.a) <t coso)] flayida,

— Z#jvk R2

i—b; 2 (t-cos( (w,
ccos (@) [ by —be|- [[ e ot -] e S by dtdi

=7,k =7,k
_ (bi=by)? %
ccos (@) - |bj—bi |- [Je = - J[e db dby dt dip
i=j.k i=j.k

ST [ tiwa) <t-cos o) fitadar | - cos(0)

Z#]vk‘ R2

Bl

\MI:\ »
O\,w

[T [ tlwa) <t cos(o)] filadas | - cos(o)

_% Z#]vk‘ RQ
4 0
M ~by)”
1 e //|b] —bi|- [ e = dbjdbrdtdg
i=j,k 0 =3,k
— (4.27)
(t-cos(p)—(w,a;))” )2
e //\bj —b]- [ e dbydbedtdy
i=j,k 0 i=j,k

In the last step we have extracted all parts from the b;- and by-integrals, which depend
only on the values of ¢ and ¢t. Now we are able to apply the rule of the so-called
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4 Smoothed Analysis Of Polyhedra In Dimension 2

pointwise comparison®. So we will obtain the following estimation for (4.27):

4 0

//|bj—bk 1"

=7,k

sup ~ 0

—5<p<3 i 5,)2
0<t<2 / / | b; — by | - o2 db;dby,
i=j, k

0

Looking at the Supremum we want to recapitulate the impact of the values ¢ and t
on the integrals because this seems to be somehow hidden. As mentioned above they
affect the concrete value of the centers Bj and by. We remind that for that context we
had already stated in Lemma 4.3.8, that for arbitrary —5 < ¢ < 7 and 0 <t < 2 the
bounds

B

hold. So we are able to derive an upper bound .

4 0
//|b] —bl- I e
i= k
sup 5 -
~3<e<s 7 5,2
0<t<2 //\b] — b |- H e 20 db; dby,
0 =3,k
4 0
//|bj—bk T e " avyan,
0 =73,k
sup — . (4.28)
bj |,| bk |<3 2
| EE //‘b]_bk G Q)dbjdbk
0 =7,k

Continuing we shall derive an upper bound for the expression (4.28). Let l_)j and by,
such that ’ b } , } bi. } < 3 be arbitrary and consider:

4 0 )
//|b]—bk S b by,
=73,k

oco 0 )
//\b]—bk [T e " dbb,
0 =7,k

A detailed description of that estimation rule can be found in [Bor87].
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_(bp)? _ (=bp)?
//|bj—bk|-e e A b, db,

R N YL
//|bj—bk"€ 202 ce 202 dbdby

4 0 9
_ (b=by) _ (b—bp)?
// ‘ bj — by | -e 202 -e 202 dbjdbk
0

4 0 5
_(bj=by) _ (b —bp)?
//|bj—bk|-e e A b,
0 —o0

_ (bp=by)? (b =by)?
e 202 /|bj —by|-e 22 db;dby,

(4.29)

_ (b —bp)? _ (b —b)?
e 202 / | bj — b, ‘ -e 202 dbjdbk

For ¢y we make the convention € < ¢ty < co. Now we give an upper bound for (4.29):

4 . 0
wp U / T / |b; — by, | db;dby
—e<b;<0 0 e
TR — . (4.30)
Lt / e~ A / |b; — by | dbjdby,
© 2 i )

(%)

First of all we want to study (*) from (4.30) in detail and to derive an upper bound .
Since ty > € we have in the first instance

7(17]'—17]')2 7(0]'—17]')2
sup e 2?2 sup e 202
—e<b;<0 —t9<c;<0
< — (4.31)
. _ J . _ 7 J
inf e 22 inf e 272
—tp<b;<0 —t0<d;<0
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with “free” ¢; and d;. Asis known ’ Ej ’ < 3. From that fact combined with —ty <¢; <0
and —ty < d; < 0 it follows, that ¢; from the numerator is at most 3 + ¢y distant from

b

-

In addition it is clear that ¢; and d; from numerator resp. denominator differ at

most by ty. Now we can apply Lemma 2.2.3 and we conclude that

Ai(cj"aj)Q
sup e 202
—t0<¢; <0
J — < e
_(dj—b)t
inf e " 272
—tp<d;<0

2
2(3+tg)to+Htg 6t( 3t

202 = €202 .- @202,

An explicit choice for ¢y is still possible. We should make it in a way that in the upper
bound just derived, the parameter o disappears in the denominator. One such suitable
choice would be ¢y := 0. Hence:

sup 202
—t9<c; <0 Stg 3ty 602
— < 620’2 620‘2 — 620’2
(dj—bp? —
inf 2072
—to<d; <0

IS

[Nl
®
4
IN
®
[Nl
®
N
IN
®
ot
—~
W
w
[\]
SN—

-620’2 = e

where (¢) holds because of 0 < 1. Now we can deal with the evaluation of the quotient
(*x) from the term (4.30). We should bear in mind that we have set to := 0%

J

0
2
e /|bj—bk\dbdbk

4
_(
€
0

4

0
e
22 / | b; — by | db;dby

—to

(bk bk)2

0
/ —b; + by,)db;dby,

—€

[
[
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r—|
wl»—‘

0
b +b; - bk] dby,

l—|
[\D|H

0
b +b; - bk} dby,
—to

b 1
-(5-62+e-bk)dbk

b 1
-(5 12+ tg - by,) dby,

(since € < 1)

4 4
%'62~/e e e /b e b
_ 0 0
4 4 i
- t3~/e U Gy + o - /b e,
0
4 2 2
%-e-/e = dbk—k/bk-e B by
_ £ 0 0
tO 4 4
%-to-/e e o+ / L
0 0
4 4 )
l-to-/e e o+ / e b,
< ‘. 0 0
- tO 4 4
%~t0'/e S i + / U
0 0
€
- £

Here it is important that ty = o2. We achieve the upper bound

4
< )
/ G /\b—bk\dbdbk
0 €
— <5 (4.33)
_ (b—bp)?
/ T / | b; — by | dbdby
0 —to
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Combining the two upper bounds just calculated (4.32) and (4.33), leads to the esti-
mation:
P[] <€) AQI (b <OAby > 0) A
€

A({w,a;) <t-cos(p) Vi#j, k)N (t>0)] §e5-—2.

o
This finishes the proof. O
For the probability (4.15)we prove an analogous Lemma.
Lemma 4.3.12.
On the basis of our conventions it holds:
Pl(|box| <e)AQ| (bj <OAb > 0)A
A((w,a;) <t-cos(p) Vi k) AE>0)]<e ;

Proof. For the derivation of that statement we follow essentially the strategy of the
proof to Lemma 4.3.11. First we formulate the probability like that:

Pl(|b]| <)AQ| (b <OAb, > 0) A ((w, @) < t-cos(p) Vi k)A(t>0)

Pl <e)ANQA(D; S0OND>0)A

a P[(b; <OAb >0)A
A((w,a:) <t-cos(p) Vi#jk)A(t>0)]
/\((LU,ai)St-COS((p) VZ#],k?)/\(tZO)]

For the numerator we perform some transformations and estimations. Again we deal
with the set

Q/ = {(cpvtvbjabkaa'i;éj,k) : _g S 2 S gat S 2a|bj| S 4’|bl€| S 4}
with @ C @Q'. Consider :

Pl(|be]| <)AQA(D; SOAD > 0) A ((w,a;) <t-cos(yp) Vi k) A(t>0)
< P[(|bx| S OAQAD; SOAb, > 0) A ((w, @) < t-cos(p) Vi3 k)A(t>0)

Pl(|b| <OAO<ES2A(b; | <A A(be| <4)A (b <OAb > 0)A
A({w,a;) <t-cos(p) Vi#j k)

O
=
=
o
A\
P
>
=
N
~
IN
>
>
=
IN
N
>
s
IN
e}
>
S
Ea
Y
=
>

A({w, @) < t-cos (o) Vi #J,k)
PO<b, <e)AN(0<t<2)AN (-4 <b; <0)A((w,a;) <t-cos(p) Viz#j k).
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4.3 An Estimation Of The Probability For Short Edges

The equation holds because we could assume (without loss of generality) that € < 4 as
in the proof to Lemma 4.3.11. An integral expression for the probability in question is
deduced as follows:

PO<b, <e)NO0<t<2)A(—-4<b; <0) A ((w,a;) <t-cos(p) Vi#j k)

- (=) / / / / [T [1iw.a) <t-cos(ol fadas

Z#]vk‘ R2

s
2

(b _ (eoste)- wag)?
wcos () [b =t |- [T e 5 [T e dbedbydtdi. (434)

i=jk i=jk

With regard to the denominator we exploit the (already obtained) estimation (4.20).
In combination with the expression (4.34) we get:

Pl(|bx]| <e) ANQA(b; <OAD>0)A

P[(b; <OAb>0)A
A((w, @) < t-cos(p) Vi#jk)A(t>0)

A((w,a;) <t-cos(p) Vi#j,k)AN(t>0)]

/0 JIL [ tlwa) <t-cos(0) fiada

Z#]vk‘ R2

/0/ 11 /]1[<“”“i>Sf'COS(w)]fi(ai)dai

Z#]vk‘ R2

(b;—b))? (t-c0s() — (w,a;))?
cos(p) - [by bl [[ e 7 - [[e o dbydbydtdy

=7,k =7,k
(b;—b))? (t-c0s(p) = (w,a;))*
ccos(p) - |bj—bi|- [[e = - J[e = dby,db; dt dip
i=j,k i=j,k

/g/ H /]1[(w,ai)§t~cos(<p)] filai)da; | - cos ()

Z#]vk‘ R2

|
VB
o

\w\:
\..

11 / 1 [{w, a;) <t-cos(p)] filai)da; | - cos (p)
0 \i#ik o

[SE]
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0
(- 605(50) <w (t-cos(p) —(w,a;)?
I e //|b]—bk db; dt dy
i=j,k 40 i=j3,k
— . (4.35)
(t-cos(p)—(w,a;))* (wa b;—b;)
e //|b]—bk He - dby,db; dt dip
=73,k 50 0 i=j,k

During the last step we have again extracted the respective terms from the integrals as
far as possible. Application of the pointwise-comparison-rule delivers for (4.35):

0

//|bj—bk He dby db;
sup 0 i=j,k
—z<e<z  p F
0<t<2 //|bj —bg |- e db;
—00 0 i= ]k
0
//|b]—bk db;
sup 20 i . (4.36)
|b]| | b | <3
//|b — by |- e db;
—oo 0 i= ]k

The upper bound (4.36) results from Lemma 4.3.8. This Lemma has the meaning
that for the feasible values of ¢ and ¢ the centers of the distributions b; and by, satisfy
} b; } , } by } < 3. The term in (4.36) will be evaluated further in the following. For that
purpose we study

0 €
//|bj—bk| IT¢ db,
=7,k
=0 ! (4.37)
_(
//|bj—bk|-He db;
—oc0 0 =5k
0 €
= (b —by)?
/ / |bj — b |- e 22 e 27 dbydb;
—4 0
- 0 oo
(b =b)? (b —b1)?
/ / |bj — b |- e 22 e 27 dbdb;
—oo 0
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0 e _ )
_bi—by) _ (b =bk)
[ 10l
< —4 0
- 0 o0 582 2
_(bj—bg) _ (b —bg)
[ 1=t
—4 0
0
._5 2
/ e / b, — b | - db;
o —4
= - =
(b; 7b )2
/ J1t =l e it
0
0 €
(b; 7b )2
/ /|b] — bk| e
< =
— 2 o
_ (bj—by)
/6 27 /|bj—bk\ ¢
—4 0
0 - €
- _(bj*bj)2
_ (bp—bg) e 202 | bj — bk; | dbkdbj
sup e 202
0<by<e —4 0
<bi < . 4.38
- . _(g=bp)® 0 ( )
inf e 202 _(b=b))?
\ogbkg# | e 202 | bj — bk ‘ dbkdb]
() —4

()

Now we bound (%) from the term (4.38). We remark that we may assume that o2 > e.
Hence:

_(bk—Bk)2 7(%*519)2
sup e 20?2 sup e 207
0<b<e 0<c, <02
—k= — < = k= —. (4.39)
. _ (b =bp)® . _ (dp=bp)”
inf e 22 inf e 22
0<by <02 0<dy<o?

Since }Ek ’ < 3, we know that ¢ in the numerator differs at most by 3 + o2 from by
Moreover it is clear that ¢; from the numerator and dj, from the denominator differ at
most by o2 from each other. So we are able to apply Lemma 2.2.3 and we can derive
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an upper bound:

_ (ex=b)?
sup e 202
0<cp<o? 23+0%) 02 +a 602
— — e 202 = @202
. _Up=bp)?
inf e 202
0<dy <o?

After that we study (#x) from (4.38) in detail:

bfb

e /\b—bk|dbkdb

b-—b)

e /\b—bk|dbkdb

[
/

€

/ —b; + by,) dbydb;

0
/ (b 7b

—4 0
0 o2
(bj—Bj)
/6 202 /(—bj + bk)dbkdbj
—4 0
O —
_ (=02 1 ¢
/6 202 |: b bk+§ b:| db]
0
4
= — -
(b;—b;)? 7
/ e 37 { b by + = bﬂ db;
O —
(bj—b;)> 1
e 22 - (=b €t ) db,

0 0
) (b —b )2 (b —b )2
€ [ e dbj—e- [ bj-e” db;
. —4 —4
o 0 0
L (b =b)? (b2
5'04'/6 db—aQ-/b] e 2% db;
—4 —4
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0
(b; é 2 (b b)2
b] e db;
0
(b b )2 (bj—b;)2
_ e a2 .
e db, bj-e 20 db;
—4

N[ =

9 2 9 72
(bj—b;) (bj—b;)
1 2 — -
30 -/e 202 dbj—/bj-e 202 (b
€ —4 —4 2
< — dae<o
< R g — (dae<o)
1 9 _ (bj—ij) _(bj—bgj)
5" o° - € 20 db] — bj - € 20 dbj
—4 —4
€
= —. 4.41
o2 ( )

Combining the two just obtained upper bounds (4.40) and (4.41) delivers the estima-
tion:

o 5 €

A({w,a;) <t-cos(p) Yi#jk)AN{t>0)]<e =l
This finishes the proof. O
The next Lemma presents an upper bound for the probability (4.16).
Lemma 4.3.13.
Under our notation and configuration it holds:

PI([6; | <€) AQ| (bj =2 0N b <0) A
A(w,a;) < t-cos(p) Vi k) At>0)]< 65.;.

Proof. We design the proof for this Lemma in a similar manner as we have done it
for both previous Lemmata 4.3.11 and 4.3.12. Therefore we start with a well-known
transformation and an estimation:

Pl(|bj] <e)AQ| (b; > 0Abr <0) A ((w,a;) <t-cos(y) Vi k)A(t>0)

P(|b;| <) AQA (b > 0Abe <0) A ({w, ai) < t-cos(p) Vi j,k)A (> 0)]
P(b; 20N b <0) A ((w,a;) <t-cos(p) Viz#jk)A({t>0)

PIO<b, <e)AN0<t<2)A(-4<b, <0)A((w,a;) <t-cos(p) Vi#j k)
P(b; 20N b <0) A ((w,a;) <t-cos(p) Vizjk)A({t>0) '

IN
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The following considerations are based on these three terms. We introduce an integral
formula for the probability in the numerator. And for the probability in the denomina-

tor we take into regard the known representation for the probability in the denominator
n (4.24). So we get to the estimation:

Pl(|bj] <e)AQ| (b; > 0Abx < 0) A ((w,a;) <t-cos(p) Vi k) A(t>0)

//// 11 /]le’a’i) < t-cos(p)] filai)da;
-2 0 40 i,k po
S s
2 2 0 oo
//// 11 /1 [{w, a;) <t-cos(p)] fi(ai)da;
10 Joo 0\ Ra
i=b;)° t-cos w,a,; 2
~cos (i9) - 1b; = b |- ]| et IIe B db; dby dtdy
i=7,k ik
i=b;)° t-cos w,a,; 2
ccos(p) 1by =il [L e [ e o dbydbedtdy
i=jk ik

/g/ H /1[<w’ai>§t'cos(<ﬂ)] filai)da; | - cos ()

0 Z#]vk‘ R2

[SE]

\..w\:
\..

11 / 1 [{w, a;) < t-cos(p)] fila)da; | - cos (p)

0
(t- cos(go) <w a1>) i i)2
I e |b — b |- 2 db; dby, dt dg
i=j,k i= Jk
= . (4.42)
G COS(w) (G2 (t-cos(e) — (w,a;))?
] e //|bj—bk dtdg
i=j,k _50 0 =7,k

Again we make use of the rule of pointwise comparison and with the help of Lemma
4.3.8 we achieve the upper bound for the term in (4.42):

0

//|b—bk He db; dby,
—4 0 1=j,k
sup =
—%Swﬁ% i)2
0<t<2 / / |b; — by | - H e 20 db; dby,
~s0 0 i=j,k
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0
// | bj — bk e
i= k
< sup 20 ~ (4.43)
b |,| bk [<3 (b;—5;)
|55 ]| o | //|b—bk He 22 db; dby,
—oo 0 i=j:k
The term (4.43) , } b, ’ < 3 be arbitrary.
Now we consider
0
/ / b — by -
2140 i= Jk
0 oo
//\bj—bk He db; dby,
—c0 0 =3,k
0
(b, —bp,)?
/ / [y — by |- e A e
240
0 oo
(bj—b;)* (b, —=b)?
/ /|bj —by|-e 22 e 202 dbjdby
—oo 0
0 €
i —b;)? (b —b5)?
//|b] — by | - T . db,;dby,
< A0
- 0 oo
(b =5;)? (b —bp)?
//|bj — b |- 222 e 202 dbjdby
240
0 € -
(b, —bp,)? (bj_b )2
/e £ /|bj—bk|~e db;dby,
- 0
o 0 00
(b —bp)?
/6_ k202k /|b]—bk| e
4 0
0 ) €
(b, —b1) i —bi)?
/ S / |b; — by, | - €™ 22 db;dby,
< 0
- 0 o?
(b —bp)? (b;=5)°
/e 202 /|bj — by |- e 22 dbjdby,
4 0
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0
12 (bk bk)2
o | /|b i
0§bj<€
< — (4.44)
inf e 202
0<b; <02 / | dbjdby,
(%) -4 _
()
Estimating (x) in (4.44) delivers under use of Lemma 2.2.3 as before :
_(bjféj)2
sup e = 202
0<b;<e 5
el (4.45)
inf e 22
0<b;<o?

For that reason we go on to deal with (%) from (4.44):

(bk bk;)2

e /|b by, | db;dby,

2

/|b — by | db;dby

(k bk)

J
It

€

0
/ ot / — by) db;dby

—4
0 ) 02
by —b
/e e /(b — by)db,dby,
—4 0
) 1
(b —by)? €
Pl b B2 — by - bj] dby,
0 1 2
 (b=by)? o
/6 k202k . |:§ . b? - bk; . bj:| dbk‘
4 0
0

1
e 202 '(5'62—bk'€)dbk
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_(bk—gk)Q
bk & 202 dbk

po |
™
o
]
|
=
I
N
[
o
ES
)
| \
-~ =}

_ (bp=bp)?

bk - € 202 dbk

(bg—by)?

bk-e_ 202 dbk

s ”L\O “L\o

_ (b —bp)?

€ 202 dbk —/bk - € 202 dbk

N [

(b —bp)?

bk-ef 202 dbk

(since € < %)

IA
|

(b —bp)?

bk - € 202 dbk

[N

_ £ (4.46)

g

Both upper bounds (4.45) and (4.46) together lead to:
P01 <e)AnQ| (bj Z0Abr <0)A
€

A ((w,a;) <t-cos(p) Vi#jk)A(t>0)] §e5-§.

This completes the proof. O

Finally we formulate a Lemma for the probability (4.17).

Lemma 4.3.14.
On the basis of our arrangements it holds:

A(w,a;) <t-cos(p) Vi k) A{E>0)]<e -

o2

Proof. The proof runs in a similar way as for the other Lemmas. At first we need the
transformations:

Pl(|be] <)AQ| (b > 0Ab, <0)A ((w, @) < t-cos(p) Vi k)A(t>0)

O P[([b | SONQA(; > 0Ab <0)A ((w,a;) <t-cos(p) Vi g k)A(t>0)
B P[(b; > 0Ab, <0)A ({w,a;) <t-cos(p) Vi j,k)A({t>0)
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<IP[( e<b, <ONO<t<2)A(0<b; <A A ((w,a;) <t-cos(p) Vi#j k)
B Pl(bj 2 0N b, <0)A ({w, @i) < t-cos(p) Vi) k)A(t=0)

For the numerator we derive an integral representation. For the denominator it pays
to have a look at the term (4.24). So we obtain:

P(|b]| <)AQ| (b > 0Ab, <0)A ((w, @) < t-cos(p) Vi k)A(t>0)

/// 11 /“<“”“i>§t'008(90)] fi(ai)da;

-z Z i#5k pa
(b —by)* (t-cos(p) — (w,a4))?
ccos(@) b —bi|- [Je 7 - [[e = = dowdbdtdy
i=j,k i=jk
(b —by)* (t-cos(p) — (w,a4))?
-cos(gp)-|bj—bk|-He_ 207 -Hew—dbkdbdtdcp
i=jk i=jk

/g JIL [ 1lw.a) <t cos () fitaday | -cos o)

0 Z#Jvk R2

[ UL [ 1iw.a) <tcosel fitada, | -cos o)

z 0 Z#JkRz

4 0
(t-cos(p)—(w,a;))* (wa
Jle = //\b]—bk He Tt dbkdbdtdgo
i=3,k i=j,k
— (4.47)
(t- 605(90) (. (t-cos(p) —(w,a;)?
I e //|b]—bk db; dt dy
i=j,k 0 —oo i=j3,k

Under use of the pointwise-comparison-rule and of Lemma 4.3.8 we arrive at the upper
bound for the term (4.47):

4 0

et [ o
0 =73,k
sup = 0
—%Swﬁ% i)2
0<t<2 / / |b; — by | - H e 20 dby, db;
0 =7,k
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//|b—b;.C db;
=3,k
< sup ~ (4.48)
b;|,| bk |<3 (b;—5;)
|55 ]| o | //|b—bk He 22 dby, db;
0 —oo i=j3,k

Now we seek for an evaluation of (4.48). Let }7)]- } , } by } < 3 be arbitrarily chosen and
consider:

4 0
//\bj—bk He dby. db;
0 i=j.k

co 0
//|bj—bk db;
0 =7,k

4

/ bj—b;)? (b —bi)?
/ / b — by |- e F e a2 dbydb
0

co 0

bi—b;)2 (b —by)?
b, —by| e 2f e st dbydb,
0 —o0
4 0
bj—b;)? (b —bp)?
b, — by | e 22 e 2t dbydb;
< 0
= 0 -
(bj*bj)Q (b, —by,)2
/ / |bj — by |- e 37 e 22 dbydb;
0 —o0
4
/ db;

0

._5 2

/6 /|b —bk
(b-—b )2 (b —bp)?

/ e / |bj —bi |- e 2% dbydb;

—€

(b =5)) 2 (b —bp)2
/ / b, — by |- e %A dbydb,

0 —o?

IN
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4 0

o, _(b —b )2

sup e (b ) /e /|b — by, | dbydb;

—e<bp<0 0 e
< — : . (4.49)

inf e 22 _

—02<b<0 ) /e | dbydb;
) K )
(+4)

For () from (4.49) we apply Lemma 2.2.3 and this leads again to :

_(bk—Bk)2
sup e 202
—e<br<0
— k= < e, (4.50)
X 7(%-%)2 -
inf e = 2?2

—02<b<0

For that reason we look at (#x) from (4.49):

4 0
(b —b )2
/ /|bj—bk|dbkdb
0
4 0
(b;=b;)°
/e 202 / |b; — by | dby.db,
0 —02
4 0
(bj—by)
/6_ 202 /(—bk + b])dbkdb]
0 —€

0

’ (b;—b;)2
/6_ 202 /(—bk + b])dbkdbj
0

—02

0y hp? ) 1, 0
/6 |:—§bk—|—b]bk:| db]
0 —€
4

(b'—b )2 1 0
/6 |:—§b%+b]bk:| db]
0 -

4
(b'—b) 1
/6 (§'€2+bj'€)dbj
0
4

(b_b) 1y 2
/ (5-0 +b; - 0%)db;
0
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4 4

(b]—bQ (bfb)
-62-/6 db+€/b e db,

0

DO | =

4

0
1 h p?
(b; b) (b;—5;)
-04-/6 ‘= db; + 0® /b e "2 db;
0

0

. 4 L 4
(bfb
5.6./ / - b,
0 0
4

DO |

o’ 1 (b -b))? )2
b; fb (bj—bj)% —b
0 0
4
1 (b 7b )2 (b;—8)% —b
€ 0
< ol 1
1 <b-—b >2 2
0 0
€
Combination of both upper bounds (4.50) and (4.51 yields :
. s €
A({w,a;) <t-cos(p) Yi#jk)AN({E>0)]<e =l
This finishes the proof. O

At this point the aim of step 4 is achieved. Now let us go to step 5.

Step 5:
In this final step we want to derive the upper bound stated in Lemma 4.3.4. On basis
of the findings described so far it is sufficient to combine the upper bounds from the
Lemmas 4.3.11, 4.3.12, 4.3.13 and 4.3.14 . Then we arrive at:

P [(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A] < 4e” - £

o?
This proves the proposition. O

With the end of the proof of Lemma 4.3.4 we are at the end of this section. In the next
section we deal with the so-called Three-Viewpoints argument. This will be applied to
our problem and in combination with the result of this section it will yield an estimation
of the number of vertices.
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4.4 The Three-Viepoints-Argument

In this section we introduce the so-called Three-Viewpoints-Argument. It was penned
by Roman Vershynin. He used this argument for his Smoothed Analysis of the Simplex
Method [Ver09] for the estimation of the expected number of shadow vertices in a
perturbed polyhedron.

With regard to our own purpose the Thee-Viewpoints-Argument is as useful as in
[Ver09]. We are interested in the number of edges of the polygon P = KH (aq,...,an).
In order to count edges in reality it seems necessary to be able to see them. In the
classical approach one uses a fixed observation point (e.g. the origin) and one studies
the polygon looking from there. In that configuration it is possible that we look at
some of the edges under an extremely small angle. Although such an edge may have
a reasonable length, our impression may be that the edge is extremely short. In other
words we are unable to guarantee a fixed relation between the actual length of the
edge and its seeming length under the angle of observation. This disadvantage must
be taken into regard in the estimations and it leads to a tremendous coarsening and
deterioration of the results.

As Vershynin shows, this complication can be avoided by using three observation points
instead of persisting in one. A skillful choice of the observation points ensures that for
each edge we have at least one observation point that reflects the real length of the
edge such that the impression differs from reality at most by a certain factor.

This insight will be discussed in detail in the following. It will turn out to be extremely
important to get a sharper bound for the number of edges. The Three-Viewpoints-
Argument essentially consists of two separate geometrical findings, which are stated in
the two following Lemmata.

Lemma 4.4.1 (Three Viewpoints).

Let P= KH (by,...,by) be a polygon, where the points by, ..., by are in general posi-
tion °. According to our condition of nondegeneracy 2.4.1 this is satisfied when we want
to apply the argument and when the points have norm not larger than 2. Let 01, 09, 03
be the vertices of an equilateral triangle, whose center of gravity is in the origin. And
in addition let ||o1]| = ||oz|| = ||os|| = 8 hold. Then for each edge KH (b;, by) of P
there is an i € {1,2,3}, such that KH (b;, by) is an edge of KH (o;, P) and

dist (Oi, AH (bj, bk)) 2 2
holds.
A graphical illustration is given in figure 4.6. This figure can in original and scaled

form be found in [Ver09, Lemma 7.2]. The interpretation of that figure shows the way
to prove the result. ”

6That means: three points can never lie on one line
"This is adapted to [Ver09, Figure 7.2].
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4.4 The Three-Viepoints-Argument

Figure 4.6: Graphical illustration of the Three-Viewpoints-Principle

Proof. Let us start with a general observation. Look at a straight line G through the
origin. Moreover we should have an equilateral triangle with center of gravity in the
origin and with vertices 01, 05,03 all in distance r to the origin. Then there are two
vertices lying on opposite sides of the line and having a distance of at least § to the
line. This limit £ will even be attained if the line is parallel to one of the edges of the
triangle. A graphical illustration of that case can be found in figure 4.7.

~le

N
Figure 4.7: Distance of the vertices in the triangle to the straight line G

With respect to our polygon P let G be just that line through the origin which runs
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parallel to the edge KH (b;,b;) von P. From the remark above this leads to the
guarantee that among the vertices o1, 05, 03 of the triangle there are two vertices lying
on opposite sides of G and whose distance to the line is at least % =4 . Without loss of
generality this may be the pair o; and 0. Moreover the fact that all points bq,..., by
have distance at most 2 to the origin assures that:

dist (G, AH (b;, b)) < dist (G, KH (b;, b)) < dist (0,b;) < 2.

This is visualized in figure 4.8: The two points 0; and o0, are on different sides of the
line and they lie in the dark grey colored regions. These regions are characterized by
the fact that all points of those regions exhibit a distance of at least 4 to G. The line
AH (bj, by), which is parallel to G belongs to the region colored in light grey.

Figure 4.8: Illustration for the proof of 4.4.1

We recognize immediately that o, and 0, also lie on opposite sides of the line AH (b;, by)
and that moreover

dist (Oi, AH (bj, bk)) > 2

for i = 1,2 holds. It remains to show that K H (b;, b;) for an i € {1,2} is an edge
of KH (0;, P). Under our condition K H (bj, by) is an edge of P. In combination of
this insight with the separation property of AH (b;, by) just derived, one realizes that
one of the points 01, 0o must belong to the same side of the line AH (b;,by) as the
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polygon P. Without loss of generality let this be 0;. In other words the situation is as
follows: The point o, lies on the same side of the line AH (b;, by) as the polygon P
and in addition K H (b;, by) is an edge of P. This means, that K H (b;, by) is an edge
of the “extended” polygon K H (o4, P), too. This concludes the proof. O

Lemma 4.4.2 (Angle and Euclidean Distance ).
Let L be a straight line in the plane such that

dist(0,L£) > 1.
Then an arbitrary pair of points @1, xs on L with ||x1]|, [|[x2]] < 10 satisfies:
c-dist(xy,xs) < arc(xy, x2) < dist(xq,xs),
where ¢ = (10% + 1)1

Proof. An explicit derivation of this statement can be found in the proof of Lemma 7.3
in [Ver09]. We restrict ourselves to illustrate the fundamental idea of that result by
means of figure 4.9. 8

T, T2

dist (0,£) > 1

____——————Ecg

0
Figure 4.9: Angle between x; and s

Further considerations are supported by taking the two following statements into re-
gard:

1. The distance of the line £ to the origin is at least 1.

2. The distance of x; and of x5 to the origin is at most 10. In consequence both
points cannot (by moving on the line £) disappear from the point @ by an arbi-
trarily high distance.

These two items make it clear that the angle a between both points cannot become
arbitrarily smaller than the distance dist (a1, x2) itself. Hence c¢ - dist (x1,xs) <
arc (x1,xy) for a constant ¢. The second inequality arc (x1,x2) < dist (x1,x3) can
be understood in a similar way:. O

8This is adapted to [Ver09, Figure 7.3].
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4 Smoothed Analysis Of Polyhedra In Dimension 2

These two Lemmata can be used for giving the following interpretation. For by, ... by €
R? in general position we observe the polygon P := K H (by,...,by) and further we as-
sume ||b;]] <2 foralli=1,..., N. This polygon is embedded in an equilateral triangle
with center of gravity in 0 and with vertices all of norm 8. Lemma 4.4.1 implies that we
find at least one point of view for each edge, K H (b;, b;) of P, namely o; (i = 1,2,3)
such that the edge K H (b;, b,) under adjoining o; to the convex hull remains an edge.
So we know that KH (b;,by) is an edge of KH (0;, P) = KH (0;,by,...,by). In
addition

dist (0;, AH (bj,by)) > 2. (4.52)
For technical reasons we study in the following the convex hull

KH (0,,P) = KH (0;,by,...,by) shifted by the vector —o;. So from here on we
work under

PZ‘I: —Oi—f-KH(Oi,bl,...,bN):KH(O,bl—Oi,...,bN—OZ‘).

Obviously this does not change the fundamental structure. A descriptive interpretation
of P, is as follows: Instead of looking at P from o;, as we are used from using the Three-
Viewpoints-Argument, in the case of P; we study the shifted polytope —o; + P looking
from the origin 0. The edge K H (b;, b;) of P changes into

KH (bj — Oy, bk — Oi) = —0; + KH (bj, bk)
and for the line AH (b;, b;) we get
—0; + AH (bj, bk) .

As known from (4.52) we have dist (0;, AH (b;,b;)) > 2. Hence it follows directly
that

In addition for the two endpoints of the edges —o; + b; amd —o; + by on the line
—o0; + AH (bj, b;) we see that:

|—0:i +b;]| < [|—oil| + [|b;]| <8+ 2 =10,
|=0i + bi|| < [|-oill + [[bx[| <8+ 2= 10.

For that reason we can apply Lemma 4.4.2 and we can conclude, that
c- dist (—Oi + bj, —0; + bk) < arc (—OZ' + bj, —0; + bk) < dist (—Oi + bj, —0; + bk)

with ¢ = (102 + 1)~! holds. That property is transferred on an arbitrary pair of points
x1, 3 € —0;+KH (b;,b;). We want to remark that the term arc (—o; + b;, —o; + by,)
corresponds just to the angle between b; and by, under observation from o;.
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4.5 An Upper Bound For The Number Of Vertices

We summarize the observations we have made in a concise form

Conclusion:

For each edge KH (bj,b;) of P = KH (by,...,by) we find an observation point
out of {01, 05,03}, which contains that edge and which allows an observation under a
suitable angle. By suitable we mean that the size of the angle differs from the length of
the edge at most by a known (guaranteed) factor. This keeps a kind of proportionality.

Having summarized the fundamental results obtained with the Three-Viewpoints-Argument,
we can step forward and use this results in the next section in order to estimate the
number of edges.

4.5 An Upper Bound For The Number Of Vertices

The aim of this section is the derivation of an upper bound for the expected value of
the number of edges of

P=KH (ai,...,a)

in the case of perturbed vectors aq,...,a,,. For that purpose we make use of the
Three-Viewpoints-Argument, which had been discussed in the previous section. And we
combine that with the upper bound from section 4.3 for the probability of short edges.
Essentially we follow the proof-strategy of [Ver09], and apply this to our configuration.

More precisely stated we are going to prove the theorem:

Theorem 4.5.1 (Number of Vertices in Dimension 2).
Let aq,...,a,, be independently and normally distributed random vectors in R? with

centers @y, . .., Gy, having a norm at most 1 and with standard deviation o < 11( -
nim

In addition let the random variable K stand for the number of edges of P = KH (a4, ..., Q).
Then under the given perturbation model it holds:

1
E[K] < Const - —.
o

This expected value is calculated over the the random vectors aq, ..., a,, and Const is
an absolute constant.

Proof. The subject of our study is the polygon
P=KH (ay,...,a,)

and the random variable K stands for the number of edges of P. In very explicit form
we can interpret K as a function K : R? x --- x R? — N, which is defined as

K(z1,...,2y) = # (Edges of KH (z1,...,25)). (4.53)

129



4 Smoothed Analysis Of Polyhedra In Dimension 2

This function works on the random vectors aq,...,a,, as arguments. Moreover we
consider the set Ry, as defined in section 4.3 in the following way:

Rs:={(a1,...,an) ER¥™ : |la;| <6 Vi=1,...,m}.

For the events (ay,...,a,) € Rs resp. (ai,...,a,) ¢ Rs we use the abbreviation
Rs bzw. —Rs; . From Lemma 2.2.7 it follows that P[-Ry] < m~!. For the indicator
function 1 [Rs] it is known that:

1, if||a;]| <2foralli=1,....m
i {2l

On the basis of 1 [Ry] + 1 [~R2] = 1 we can split up the expectation value of K :

E[K]=E[K 1 [Re]] + E[K - 1 [~]]]
<E[K-1[Rs]]+m-E[1[-Rs]] (because K < m)
=E[K -1[Ry)]+m PR,
<E[K-1[Rs]]+ 1. (because P [~Ry] < m™1).

Using the density functions fi,..., f,, of a1,...,a,, and the notation from (4.53) the
expected value E [K - 1 [Rs]], can be formulated in the following way :

EK ]].R2 / /Kal,...,am)-]l[Rg]-fl(al)-...-fm(am)dal...dam.

R2

That means we are allowed to concentrate on those configurations of a4, ..., a,,, for
which each vector has a norm not greater than 2. Now Lemma 4.4.1 based on the
Three-Viewpoints-Argument from the previous section is applicable. This enables us
to conclude that for each edge KH (a;,ai) of P = KH (ay,...,a,) a viewpoint o,
can be found, such that —o; + KH (a;, a;) is an edge of

P =KH(0,-0;+P)=KH (0,—0; +ay,...,—0; + a,) .

Moreover we recognize: If we determine for each P; those edges, which are defined by
two vectors a;, ay, then we obtain all edges of the standard polytope P. Hence the set

{kantep, (q) : g € wy, 1 =1,2,3}:= U U {kantep, (q) }
1=1,2,3 q€wa

contains just the index sets corresponding to the edges of P.° The vector g plays the
role of the possible view-directions for the determination of the edges. It may occur
that a certain edge will be determined for different P;. This should not disturb us since
we argue in the logic of sets. The consequence is the equality

K =# ({kantep, (q) : g€ wy, 1 =1,2,3})

9We remind that the formal definition of kantep, (q) can be found in definition 4.3.2.
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4.5 An Upper Bound For The Number Of Vertices

and so it holds that
E[K-1[Ry]] =E[# ({ kantep, (q) : g €ws, 1 =1,2,3})-1[Rs]].

Before proceeding with our considerations, we need the following definition.

Definition 4.5.2 (Discretization of the unit circle).
For a k € N we first look at the set of angles

21 21 21 21

Using that structure we define a discretization of the unit circle:

o -{(Zi) e}

A graphical illustration of this definition can be found in figure 4.10.

Ve

Figure 4.10: Discretization wégo) of the unit circle

As known we are interested in
E[K -1[Ry]] =E[# ({ kantep, (q) : q € wa, i =1,2,3}) - 1[Ry]].

Some pages above we have applied 4.4.1 and asserted, that for each edge K H (a;, a;)
of P we can find a view-point o; such that —o;+ K H (a;, a) is an edge of P,. Moreover
that Lemma delivers the following insight: We can o; choose in such a way that for the
corresponding straight line G := —o0; + AH (a;, ay) it holds that :

dist (0,G) > 2.
In addition we exploit the two estimations

I=0i + a;|| < [[=oil| + [la;[| <8+ 2 =10 and
I=0i + ail| < [|-ol| + [|ax[| < 8 +2 =10,
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4 Smoothed Analysis Of Polyhedra In Dimension 2

then Lemma 4.4.2 can be applied and we can conclude that the edge can be observed
under the angle

B := arc(—o; + aj,—o; + a;) > (100 + 1)~' - dist (a;, a;) > 0.

If we choose the value k for the above described discretization of the unit circle large
enough, then we have 28 < 3. Hence there is a q € W with kantep, (q) = {j, k}.
Since this argumentation can be done for each edge of P in the same way, the following

discretization is possible:
E[# ({ kantep, (q) : g € we, i =1,2,3}) - 1[Ry]]

= lim E [# <{ kantep, (q) : q € wéz), 1=1,2,3 }) -1 [Rz]} )

{—00

Both figures 4.11 and 4.12 illustrate that principle:

Figure 4.11: edge is not hit under discretization with k£ = 10

Figure 4.12: edge is hit under discretization with & = 20
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Remark 4.5.3.

The discretization argument presented above, which is very comprehensible, has been
developed and exploited by Spielman andTeng in [ST04] for the purpose of estimating
the expectation value of the number of shadow vertices in a perturbed polyhedron. Also
Vershynin make use of this principle in his refined geometrical investigation in [Ver09].
A formally even more detailed presentation can be found e.g. in [ST04, Lemma 4.6].

The just mentioned reasoning for the introduction of the discretization can even be
used for a further significant conclusion. Without making a point of that so far, we
have recognized implicitly that: For ¢ large enough we shall realize an arbitrary edge
KH (a;,ay;) of P as index set {j, k} in

{kzantepi (@ : gewl i=1,2, 3} (4.54)
from a view-point o0;,, such that for the resulting edge
-0, + KH (a;,a;) = KH (-0;, + aj,—0;, + a;) =: KH (c;, cy)
of P, it holds that
c-dist (x1,x2) < arc(xy,xs) < dist (x1,x2) (4.55)

for arbitrary @1, @2 € KH (c¢j,¢;) and ¢ := (10% + 1)~". In the case that an edge
satisfies the condition (4.55), we shall call this edge well-scaled. The consideration
made above enables us to restrict our concentration in the set (4.54) on those index
sets kantep, (q), for which the associated edges are well-scaled. We obtain:

E[K] < Jim B [# <{ kantep, (q) : well-scaled, g € wl”, i =1,2,3 }) 1 [RQ]i| + 1.
—00
(4.56)

In addition it may happen that a well-scaled edge from the set in (4.56) is hit by several
successive vectors q,., ..., q, from wég). So it will be realized in the above set “several
times”. In that case we keep only one q. This one is selected by the criterion of having
the largest angle from the set W;, which is known from definition 4.5.2. For this reason
the angle between g and the bound ary of Kantep, (q) satisfies:

arc (q,0Kantep, (q)) <

Since the edge is well-scaled, the corresponding condition (4.55) permits the estimation:

1 2 C
-arc (q,0Kantep, (q)) < —- R

. K : < .
dist (gp,, 0Kantep, (q)) < c / /

(4.57)

Q=

Here qp, denotes accordingly to the already known definition the intersection point
KK (q) N Kantep, (q). From that insight we draw the following consequence: In-
stead of incorporating only well-scaled edges in our considerations, we count the edges
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4 Smoothed Analysis Of Polyhedra In Dimension 2

satisfying condition resp. property (4.57). Hence no well-scaled edge will remain un-
considered and uncounted. So we know:

E[K] < lim E {# ({ kantep, (q) : dist (qp,0Kantep, (q)) <

l—o0

77
gew, i=1,23 }) 1 [Rz]} +1.(458)
Now we make the following consideration

C
{kantepi (q) : dist (qp,0Kantep, (q)) < 71, qc wg), i= 1,2,3}

= U {kantepi (q) : dist (gp,0Kantep, (q)) < %, qc wéf) } .

i=1,2,3

This leads to:

# ({ kantep, (q) : dist (qp,0Kantep, (q)) < %, qc< wég), 1=1,2,3 })

; C
— 4 ( U {kantepi (q) : dist (qPi,ﬁKantepi (q)) < 717 qc wéé) })

i=1,2,3

IN

Z # ({ kantep, (q) : dist (qp.0Kantep, (q)) < %, qc wy) })

i=1,2,3

C
< 3- ‘£I11a2X3# ({ kantep, (q) : dist (qp,0Kantep, (q)) < 71, qcwl’ }) :

So we get in place of the upper bound (4.58) a new term:

E[K] <3 max lim E{# ({ kantep (q) :

i=1,2,3 {00

dist (qPi,ﬁKantepi (q)) < %, qc€ wy) }) -1 [Rz]} +1. (4.59)

For enabling a further transformation we make some observations. As already known
the vectors a4, ..., a,, are distributed like that:

ap ~ NQ (C_l,h,0'2 . Eg)

ith ||@s] < = < A
with ||@a,|| < 1forallh=1,...;mand o < W Moreover we remember that for

an arbitrary ¢ = 1,2, 3 we have:

P,=KH (0,—0; +ay,...,—0; + a,)
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with ||o1]| = ||o2]] = ||os]| = 8. For an arbitrary combination of ¢ and h it results that
—0; + ap ~ N (—0; + @y, 0° - E»)
and here
[=0i + anl| < [|—oill + flan]| <8+1=9.

All this leads to a new upper bound :

E[K] <3 sup Zlinl E{# ({kzantez (q) :

dist (q;,0Kantey (q)) < %, qc wég) }) -1 [Rlo]} + 1.

Here b; ~ Ny(b;, 0% - E,) with ||by]] < 9 for all i = 1,...,m. Furthermore Z =
KH (0,by,...,b,). In order to avoid concerning ourselves with the Supremum, let
during the further course by,...,b,, be arbitrary normally distributed vectors having
the property just mentioned. Now the following insight is very important for an esti-
mation of the expected value:

lim E [# <{ kantez (q) : dist(q,,0Kantey (q)) < %, qc wég) }) 1 [Rm]]

{—00

< lim Z Z P [kantez (g) = A and
}

0 Ac{1,...m

C
dist (q;,0Kantez (q)) < 71 and Ry |. (4.60)

This estimation is deduced during the subsequent steps. We first note that:

{ kantey (q) : dist (q,,0Kantez (q)) < %, qc wéf) }

= U {kzantez (q) : dist (q;,0Kantez(q)) < %}
©

gEw,y

So we obtain

# ({ kantey (q) : dist (q,,0Kantez(q)) < %, qc wy) })

< Z # {kzantez (q) : dist (q;,0Kantez(q)) < %}) (4.61)

qugZ) ~ N -

(*)
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On closer examination of (*) in expression (4.61) we notice :

# ({ kantey (q) : dist(q;,0Kante;(q)) < % })

Z 1 {kantez (q) = A and dist (q;,0Kantez (q)) < %} :
Ac{1,...,m}

So we obtain:

# ({ kantey (q) : dist (q,,0Kantez (q)) < %, qc wy) })

, C
< Z Z 1 [k:antez (g) = A and dist (q,,0Kantez (q)) < 71] .

©) Ac{l,...,m}
qgcw
2 #(A)=2

Now the monotony and the linearity of the expectation value yield:

£—00 14

lim E [# ({ kantey (q) : dist (q,,0Kantez (q)) < ﬁ’ qec wy) }) 1 [Rlo]}

< lim E Z Z 1 [kzantez (g) = A and
}

(O AC{L,...m

dist (q,,0Kantez (q)) < % -1 [Ryo]

= lim E Z Z 1 {kzantez (g) = A and
}

gf) AC{l1,...m

C
dist (q;,0Kantez (q)) < 71 and Ry
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- éli_)rglo Z Z }E {]l [kzantez (g) = A and

gf) AC{l,...m

dist (q,,0Kantez(q)) < % and Rm”

= lim Z Z P [kzantez (g) = A and
- )

gf) AcC{l,..m

C
dist (q,,0Kantey (q)) < 71 and Rw]-

So we have verified the validity of the inequality (4.60). Accordingly

#(A)=2

C
dist (q,,0Kantez (q)) < 71 and Ry | +1.. (4.62)

In the following we study the probability in the term (4.62) even more precisely:

lim Z Z P [k:antez (q) = A and
}

C
dist (q;,0Kantez (q)) < 71 and Rm}

kante, (q) = A]

= lim Z Z P [dist (g4, 0Kantey (q)) < % and Ry
}

-Plkantez (q) = A]

< glim sup P [dist (g4, 0Kantey (q)) < % and Ry
—00

kante, (q) = A]

quée)
AcC{1,...,m}
#(A)=2

: Z Z P [kantey (q) = Al. (4.63)
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Further we recognize that

is valid because

Hence

Z Z Plkantez (q) = A] < /.

And this yields

C
E[K]<3:- sup lim¢- sup P[dist (g4, 0Kantez (q)) < —
b1, b {00 gew® 14
AcC{l,...,m}
#(A)=2

and Ry | kantey (q) = A| +1.  (4.64)

The essential remaining challenge is to estimate the inner Supremum-term. For that
purpose we put on record that:

sup P |dist(q,, 0Kantez(q)) < % and Ry | kantez (q) = A

qewée)

AC{1,...,m}
#(A)=2

o -
< sup P|dist(g,,0Kantez(q)) < 71 and Ry | kanteyz (q) = A| .
AC%iﬁﬁ?,m} B

#(A)=2

For this reason let during the following considerations A C {1,...,m} with # (A) =
2 and ¢ € wy be arbitrary. Moreover the following statement is important. The
probability

C
P |dist (g,,0Kantez (q)) < 71 and Ry | kantez (q) = A

is based on the random vectors by, ..., b,, in correspondence with the polytope Z =
KH (0,by,...,b,). Those vectors possess (as shown above) the distribution:

bi ~ NQ (BZ',O'2 . Eg) .
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Furthermore it holds that
1] <9 (4.65)

for all i = 1,...,m. Since we see the property (4.65) with respect to the norm of the
centers, we are at the moment not able to apply the most significant result from section
4.3, Lemma 4.3.4. For that we would need the guarantee that the norms of the centers
of the basic random vectors are at most 1. Therefore we scale these vectors by, ..., b,,
by the factor ;1 = L and so we receive the new random vectors ¢y, .. ., ¢,, with

9
ci ~ N, (Ei, <%>2 : E2>

and ||&|| = ||5b;]| < 1. They form the polytope W = KH (0, ¢y, ..., cy). On basis of
that scaling we have: 19

C
IP’b [dist (g4, 0Kantey (q)) < 71 and Ry

kantey (q) = A]

= P [dist (qw,0Kantey (q)) < % and R

kantey (q) = A} . (4.66)

That equality can in more detailed form be calculated by means of the transformation
theorem of the integration theory. But it becomes comprehensible in a simpler way if
we take into regard that: For a fixed realization of by, ..., b,, and of the corresponding
ci,...,Cy, we have under our notation:

(bl,...,bm)GRlo = (Cl,...,Cm)ERl

o3

kante; (q) = A & kantey (q) = A
as well as
dist (q;,0Kantey (q)) =9 - dist (qy,0Kantey (q)) .

For that reason we are interested in the estimation of the probability (4.66). And we
observe the following fact:

P [dist (qw,0Kantey (q)) < % and Rio
Cl,..,Cm

kantey (q) = A] (4.67)

< P [dist (g, 0Kantey (q)) < % and Ry

kantey (q) = A] . (4.68)

As already stated ¢; ~ Ns <EZ~, (%)2 : Eg) with ||&;]| < 1. For that reason we can apply

Lemma 4.3.4 and so we obtain an upper bound for (4.68) . We remind of that statement
once more:

10T improve the perceptibility, we have associated at each probability which of the random vectors
are involved.
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Lemma (Small Distances).

Let ay,...,a,, € R? be normally distributed random vectors with a; ~ N3 (@;, 0% - E5)
and with density functions fi,..., fm. Moreover let ||a;|| < 1 for alli=1,...,m and
let o < L Then

2+/1In(m)
€

P [(dist (vy,0Kantey (v)) <€) A Ry | kantey (v) = A] < 4e” - g

for an arbitrary index set A = {j,k} C {1,...,m}, wher the random vectors have the
common density

H fi(ai).

In consequence we obtain the identical upper bound for the probability (4.67):

P |dist (qy,0Kantey (q)) < % and R1

Clyeeey Cm g 9

¢ (9)°
kant =A| <4’ — (=) .
antey (q) }_ Y (g)
If we take the estimations carried out into regard, then we may insert that upper bound
in the term (4.64). Finally we get to

E[K]<3- sup lim/¢-4e’-— (=) +1<Const-—
bi,..., bm f—o0 9£ g 0’2
for a suitable absolute constant C'onst. This concludes the proof. O

In this section we have achieved our main goal, namely the derivation of an upper bound
for the expected value of the number of edges of the polygon P = KH (ay,...,a,).
We have summarized all the findings of that chapter and with additional ideas we
came to the desired result. The consequences of those results (compare the introducing
section 4.1), will be extremely valuable and useful in the Smoothed Analysis of the
dimension-by-dimension-algorithm. .
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Linear Optimization

The main topics of this chapter are the following two issues: First we introduce a
deterministic algorithm for solving linear optimization problems. Then we carry out
a smoothed analysis for that algorithm, which is based on the methods of Spielman,
Teng and Vershynin described before.

5.1 Introduction And Main Results

In chapter 3 we have learned about the variants of the Simplex Method which have
so far be investigated for the purpose of a smoothed analysis. Both procedures are
randomized algorithms. This means that the realization of the algorithm is influenced
by certain stochastic decisions. In contrast to that we explain a deterministic solution
procedure and we evaluate its smoothed running time. This algorithm is capable to
solve the same type of linear optimization problems as before, namely

maximize (v, x)

s.t. (a,x) <b P

(@, x) < O™

with v,aq,...,a, € R? and b:= (b',...,b™)" € R™.

For constructing the solution procedure we combine concepts from [Bor99] as well as
from [Ver09]. This delivers in a certain way an algorithmic synthesis of Average-Case-
Analysis and Smoothed Analysis.

For the following smoothed analysis we assume that the restriction vectors and the
upper bounds in the restrictions are not fixed, but that they vary according to the
following perturbation-rule:

a; ~ Nd (di, O'2 . Ed)
and

b~ N (D', 0?%)
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forall e =1,...,m. In addition we assume
(@, b)) <1

for all 7. This feature can be achieved by a suitable scaling of the data. Based on this
principle of perturbation it is our goal to prove the following result :

Theorem 5.1.1 (Smoothed running time of algorithm 5.5.3).
The following problem is to be solved

mazximize (v, x) (LP)

s.t. Ax < b
in dimension d > 2 with m > d restrictions. In addition we argue under an upper-
bound condition for the single restrictions of the form max,—y __n||(@;, b")|| < 1. Then
the application of algorithm 5.5.3 requires on the average not more than

1 d+1)*
C’onst-(——k#

o2

o +<1nm>2-<d+1>6) 4

piwot steps for the solution of the specific perturbed problem. Here Const denotes an
absolute constant value.

This result implies - as already mentioned - in contrast to available approaches - an
upper bound for smoothed analysis of a purely deterministic realization of the Simplex
Method.

The algorithm under consideration will be explained in detail at a later point. But
already at this stage we should mention that the shadow vertex algorithm will be
used to solve d auxiliary problems in d sequential stages. In order to make use of
the necessary bounds on the number of visited or existing shadow vertices, we should
restrict its application to problems with unit restrictions (b° = 1). Therefore we are
going to solve the original problem by solving certain substitution problems in unit
form, i.e.

maximize (v, x)

s.t. (a,z) <1 (EP)

(am,x) <1

For that reason we will think about the following question: How can we transform a
linear optimization problem of general form into an equivalent unit problem?

But first we should clarify how a unit problem can be solved by means of the dimension-
by-dimension algorithm. In that context wie note that in a perturbed unit problem
only the restriction vectors (not the right hand sides) are disturbed. That means that
the unit-property is not destroyed under perturbations.
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5.2 Fundamental Geometric Results

This section combines the hitherto known results on the investigation of perturbed
polyhedra. We are going to make use of that for the purpose of smoothed analysis of
the algorithm in 5.6.

In chapter 4 we have shown the following result:

Corollary 5.2.1 (Number of vertices in dimension d = 2).

Let aq,...,a,, be stochastically independent and normally distributed random wvectors
in R? with centers @y, . .., @, whose norm is at most 1 and whose standard deviation is
o. Let the random variable V denote the number of vertices of the two-dimensional poly-
hedron X = {x : (a1,x) <1,...,{am,x) < 1}. Then under the perturbation model
under consideration it holds that

E[V] < Const - (% + ln(m)) .

Here the expected value is calculated obver the variation of the random vectors aq, . . ., a,,
and Const means an absolute constant.

In addition we know from 3.2.1 the following estimation, which had been derived in
[Ver09] for the number of shadow vertices of a perturbed polyhedron.

Corollary 5.2.2 (Number of shadow vertices in dimension d > 3).

Let d > 3 and let a4, ...,a,, be independent, normally distributed random vectors in
R with centers of norm at most 1 and with standard deviation o. Now consider a
fized, twodimensional plane E in R? and furthermore the perturbed polyhedron X =
{z : (a1,z) <1,...,(an,x) < 1}. Let the random variable S denote the number of
shadow vertices of X with regard to the plane E. Then

3
E[S] < Const - (% +d° - (lnm)Q) .

Again Const denotes an absolute constant.

These two results will play an important role in the following analysis of the algorithm.

5.3 An Algorithm For Solving Linear Unit Problems

This subsection deals with a procedure for the solution of unit problems. The so-
called dimension-by-dimension algorithm had been introduced and used by Borgwardt
for carrying out his Average-Case-Analysis of the Simplex Method [Bor82al. It is in
addition explained in [Bor87] and [Bor99] . First we are going to look at the principal
mode of operation. After that we make a slight modification in order to handle problems
with fixed objective function.

First we are in need of some notation.
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Definition 5.3.1 (II).
Forx = (xl,...,xd)T € R? und 1 < k < d we denote

The concrete meaning is that 11, is an orthogonal projection from R%on R¥, where the
last (d — k) components of the vector  are truncated.

For 1 < k < d (EPy) will mean the following linear optimization problem in k variables:

maximize (Il (v), 1 (x))
s.t. <Hk (Cl,l) ,Hk (CB)> S 1
(EPy)
(I, (@) , i () < 1.

The feasibility region of (EPy) will be called Xj. According to the condition of non-
degeneracy 2.4.1, which holds in our case with probability 1, this is a k-dimensional
polyhedron and it has vertices because of m > d. It is important to understand that
(EP,) is identical with the original problem (EP . To gain a solution for (EP), we
may apply the following algorithm. It solves for increasing K the sequence of problems

Algorithm 5.3.2 (dimension-by-dimension-algorithm).

input: A= (a,...,a,)" undv

procedure:
1. Set k:=1, r:=0 and find a vertex of X;.
2. If there is an optimal vertex, find it (#') of (EPy). Otherwise go to step 6.
3. If k =d go to step 7. Else set k :=k + 1 and proceed with the following stage.

4. For some k € {2,...,d} a solution of (EP_1) may be available . We denote it
by

Then
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is feasible for (EPy) and it is located on an edge of Xy. Determine

j’l

.i'k

this shall denote a vertex incident to the edge under consideration. This vertex is
a shadow vertex under projection on the plane LH (11 (ey) , i (v)).

5. Use LH (1; (ey) , 1 (v)) as the projection plane and apply the shadow-vertez-
algorithm in the point

in order to find an optimal vertex

(L
i

for (EPy). Go to step 3, if & exists, else go to step 6.

6. A solution for the original problem does not exist as a result of unboundedness.

Setr:=1. STOP.

7. The vector & € R is a solution for the original problem(EP;). STOP.

output:

In case of r = 0 we report the optimal vertex & for (EP)
In case of r =1 the output is “problem unbounded”.

The significant advantage of that procedure, which had also been used in the average-
case-analysis, is the fact that for the stages k = 2,...,d every time the shadow-vertex
algorithm can be used for solving the unit problems (EPj). This effort dominates the
effort for the complete method. Consequently summing up the effort for the d—1 stages
determines the complete effort.

In addition, we want to think about the following fact. For a fixed objective v may
have the following form:
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Here we have 1 < ¢ < d “zeros at the beginning” and the first component of v’ is
different from zero. Then obviously I, (v) = 0 for all 1 < k < ¢, and therefore for the
first ¢ iterations the projection plane LH (Il (ex), 1l (v)) = LH (Il (ex),0) does
not have dimension two. This would make the use of the shadow-vertex algorithm
impossible. But we can avoid that difficulty by simply re-ordering the components 1
und (¢ 4+ 1) in the whole problem. The problem after that re-ordering is harmless.
Finally we give a short procedure for that action.

Algorithm 5.3.3 (Reordering the components).

input: A= (ai,...,a,)" undv

procedure:

1. Check v for “beginning zeros”. If there are some, then go to step 2. Else go to
step 3.

2. Determine the first component v* von v with v* # 0. Interchange the components
1 and i of v as well as aq, . ..,a,,. Go to the next step.

3. Consider the matriz A. formed from the available restriction vectors. Denote the
objective vector by v . STOP.

output:

Output: A and & .

After use of that preprocessing, we can start the dimension-by dimension algorithm.

5.4 Transformation Rules For Linear Optimization
Problems

Here we show how to transform an arbitrary canonical linear program into a program
consisting almost only of unit restrictions. The demonstrated principle comes from
[Ver09] and had been mentioned in 3.2.2. Sometimes we make use of slight modifica-
tions. A similar approach can be found in the paper of [G6h13]. The transformation
principle under use is in as much important, as we are going to carry out a smoothed
analysis of the algorithm and that unit problems can be studied much simpler.

We have a linear optimization of the form
maximize (v, x)

(LP)
s.t. Ax < b.
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In order to transform (LP) into a problem with dominating ratio of unit restrictions ,
we interpolate between the restrictions

Ax <b
of the original problem and the corresponding unit restrictions

Ax < 1.
For that purpose we introduce an interpolation variable. So the dimension increases
by one. This interpolation variable, denoted by t, attains values in the interval [0, 1].
For t = 1 the new restrictions should behave like the original ones and for ¢ = 0 they
should simulate the introduced unit restrictions. So we obtain the modified form

Az <t-b+(1—1)-1.
The objective is (at the moment) not modified. It keeps the form
(v,z) +0-t.

In total we have the new problem

maximize (v, x)
st. Az <t -b+(1—1)-1
0<t< 1.

The restrictions may be reformulated as follows:
Ax <t-b+(1—-t)-1 & Az +t-(1-b) <1
So all original restrictions have been replaced by unit restrictions. In detail this means

maximize ((v,0), (x,1))

st (a1, 1=0"), (=,1)) <1

: (Int LP)
(@m, 1 =), (x,t)) <1
(0,...,0,1),(z,t)) <1
(0,...,0,—1), (z,t)) <0.

For simplification we denote the feasible region of (Int LP) by X;p. In addition we
mention that we plan to modify the objective in a suitable way to reach some goals.
Each time we do that we shall give an hint.
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5.5 A Solution Procedure For Arbitrary Linear
Optimization Problems

On the basis of the dimension-by-dimension algorithm of 5.3, which can be applied to
solve unit problems, and of the interpolation principle from 5.4 we develop a procedure
for the solution of general linear optimization problems.!

5.5.1 Preliminary Considerations

As already known we need an algorithm for problems of the form

maximize (v, x)

LP
s.t. Ax < b. (LP)
Therefore we start with studying the corresponding unit problem
maximize (v, T
ximize (v, x) (EP)

s.t. Ax < 1.

This problem can be treated with the dimension-by-dimension algorithm from section
5.3. If the algorithm announces that the objective of the unit problem is unbounded ,
then we can stop since the general problem cannot have an optimal point neither.

Proposition 5.5.1 (Unboundedness).
We have a general linear optimization problem (LP). If the corresponding unit problem
(EP) is unbounded in the objective, then (LP) cannot have an optimal solution either.

Proof. At first we note that (EP) is always feasible, since the origin is feasible anyway.
If (LP) is infeasible, this is trivial . Now let the problem be feasible. As a result of the
unboundedness of the unit problem it is clear that there is a w € R? with Aw < 0
und (v, w) > 0. Since (LP) is feasible there is a & € R? such that AZ < b. Now look
at & + Aw fir A > 0. This point is feasible, since

A (&4 \w) = AZ + \Aw < AZ < b

because of Aw < 0 and A > 0. For A = oo we recognize the unboundedness as a result
of (v,w) >0. O

For the following we may assume that the unit problem is bounded and that an optimal
point x* exists.?2 This point can be reached by the dimension-by-dimension algorithm.
So we can construct the point (*,0). On the basis of the results in 5.4 it becomes

'We make use of the same partition into Phase 1 and Phase 2 as in [Ver09]. The solution of Phase 2
simulates the strategy of Vershynin as well.
2As we have nondegenaracy, 2.4.1 the optimal point is unique.
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clear that this point is feasible in X;p of the interpolation problem. As a reminder we
list the system leading to X;p once more

(a1, 1=0"),(x,t) <1

<(a’m’ 1- bm) ) (iL’, t)>

<1
(0,...,0,1), (z,1)) <1
(0,...,0,—1), (z, 1)) < 0.

Let A = {A!,..., A%} be the index set of the at @* tight restrictions of the (EP). Then
the optimality of * and the polar cone theorem 2.3.4 deliver :

ve KK (ap,...,apnd),

so there is a y € R such that a y > 0 exists, which leads to

d

'v:Zyi-aN. (5.1)

=1

Take into regard the restrictions belonging to A of the interpolation problem (Int LP):

(a1, 1 =), (2,1)) <1

((@pa, 1 — b2, (x, 1)) < 1.
As we easily see, these are tight for (x*,0). Also this holds for the restriction
((0,...,0,-1),(x,t)) <0,

so (*,0) delivers a vertex of X;p . With y from (5.1) we form the vector

gyi-(lgA[:Ai)Jr(_ol):‘(;) (5.2)

and we notice, that on the basis of its construction it must be an element of the polar
cone of (x*,0). So the vertex (x*,0) is optimal in X;p with regard to the objective
(v,v"). v* does not have a specific meaning. It is a result of applying the coefficient
vector y from (5.1) no longer on the originals a: for i = 1,...,d but now on the
extended vectors (api, 1 — b2").

We summarize: We have constructed (x*,0) as a vertex of X;p. This is optimal with
respect to the objective direction (v,v"). In addition, the interpolation variable has
the value 0 at the moment.
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Now it is our goal, to find a vertex of X;p, which has the form («**;1). Then &** would
be a vertex for our original problem (LP). So it makes sense to optimize in direction
0,...,0, 1)T. For that purpose we are able to apply the shadow-vertex-algorithm.
We start at the vertex (x*,0) and use the corresponding auxiliary vector (v,v"). So
LH ((0,1), (v,v")) is the projection plane under use. By the way we obtain the output
(x**,t**).3 If t** < 1, then the original problem is infeasible and we can stop. For
t** = 1 the original problem is feasible and ** is a vertex as desired. By some additional
considerations we can even recognize that in that case &** is optimal for (LP).

Lemma 5.5.2 (Optimality of ™).
Let (™, t™) be the vector which has been calculated by means of the procedure described
above. Ift** =1, then ™ is optimal for our original problem (LP).

Proof. We prove the lemma by contradiction. Under our precondition the point deliv-
ered by the algorithm is of the form (x**,1).

Assume that x** is not optimal for the original problem, i.e. for

maximize (v, x)

LP
s.t. Ax < b. (LP)

Instead let & be an optimal vertex and better than x**. Then
(v, &) > (v, ™). (5.3)

Besides let A be the index set of the tight restrictions in &. Then the polar cone
theorem 2.3.4 guarantees the existence of z € Rewith z > 0 such that

d
v = E Z' - ani.

i=1

Now look at the point (&,1), which is a vertex of X;p and in addition optimal with
respect to the objective direction (0,...,0,1). We list the tight restrictions at (&, 1) :

(a1, 1 =), (2,1)) <1

{((apa,1— bAd), (x,t)) <1
<(O,-..,O,1),(:B,t)> S 1.

The theorem delivers the following insight: The vertex (&, 1) is optimal with respect

to the objective
v d a 0
= i. AZ
(7)) =2 (15 )+(1)

3Note that this problem cannot be unbounded because of t < 1.
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and is in consequence a shadow vertex with respect to the projection plane under use
LH ((0,1), (v,v")). Observing the just constructed vector (v,?) (vertex (&,1) is op-
timal) and the auxiliary objective (v,v™) from (5.2) (vertex («*,0) is optimal) we
ensure in addition that © > v*. Hence the vector (v,?) is contained in the cone
KK ((0,1), (v,v")). Further we make use of both vectors and we define for A € [0, 1]
the convex combination

(2)=+ ()00 (2)

The two points (&, 1) as well as (x**,1) will be evaluated with respect to that convex
combination. So we obtain the bound

(v,00) (1)) = (0,8) + 02 2 (0,8 +0n = (0,0), (@ 1)), (5.4)

The strict inequality(o) is a result of the optimality of & for (LP) and the corresponding
upper bound from (5.3). Let further (x,,t,) be an optimal point for X;p in direction
(v,vy).* In combination with (5.4) we obtain

<(’U,’U)\) ) (CC,\,t)\» > <(’U,’U)\) ) ("ia 1)) > ((’U, U/\) ) (:13**, 1)>

So we note that for all objective directions from the (part-)cone

() (0)) erere((2) (V)

the vertex (x**,1) cannot be optimal. Remember how the shadow-vertex algorithm
works: the auxiliary vector r (v,v") is rotated in the direction (0,1). So we can
conclude that the vertex (&, 1) is attained even before (z**,1) will be reached. Under
that condition the algorithm would have to stop at (&, 1) at the latest because of the
obvious optimality in direction (0, ...,0,1) . This contradicts the condition that (z**, 1)
had been calculated by the shadow-vertex algorithm. Hence there is no & feasible for
(LP) with (v, &) > (v,a*). This ensures the optimality of #**. This proves the
lemma. O

5.5.2 Algorithmic Realization

Based on the considerations of the last section 5.5.1 we construct a procedure for solving
linear optimization problems of the form

maximize (v, x)

(LP)
st. Az <b

4Such a point exists, since unboundedness is impossible
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Our strategy is as follows: On the basis of (LP) we construct the corresponding unit
problem (EP). This will then be treated by means of the dimension-by-dimension algo-
rithm. We can stop if unboundedness is recognized. In that case the original problem
is either infeasible or unbounded, too, If (EP) has an optimum, we can use that point
in order to construct a vertex for the interpolation problem. Starting from that vertex
we try in the following step to find a feasible point for the original problem. In case
that we are successful, we have automatically obtained an optimal solution.

The algorithm for that realization runs as follows:

Algorithm 5.5.3 (Solution procedure for (LP)).

input: A= (ay,..., am)T, b und v

procedure:

Phase 1 Solve (EP), the unit problem corresponding to (LP) with the help of the
dimension-by-dimension algorithm from section 5.3. If this delivers a solution
x*, then construct the feasible point (x*,0) for the interpolation problem (Int LP)
and start Phase 2. If in contrast the algorithm reports unboundedness, then the
original problem has no solution. STOP.

Phase 2 Solve the interpolation problem starting from the vertex (x*,0) and the cor-
resonding auzxiliary objective (v,v™) as defined in section 5.5.1. The actual op-
timization direction can be chosen as (0,...,0,1)". Let (x**,t*) denote the so-
lution calculated by means of the shadow-vertex algorithm. If t** < 1, then our
original problem is infeasible. If t** = 1 then ™ is an optimal solution for the
original problem (LP). STOP.

output:

If we have an abort in phase 1 and as well in the case t** < 1 the report should be
“problem has no solution”. FElse the output should be i x**.

The definition of that algorithm was the goal of this section. In the following we will
study the smoothed behaviour of that algorithm.

5.6 Smoothed Analysis Of The Agorithm

In this section we want to derive an upper bound for the smoothed running time of the
algorithm introduced in the last section 5.5.2 . According to our perturbation principle
we have input data A = (a,,...,a,,)" und b distributed as follows

a; ~ Ny (@;,0° - E;) sowie b' ~ N(Ei ,0%)

and we assume that ||(a;, I;Z)H < 1fori=1,...,m. In addition we fix the objective
vector v.
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We remark that the number of necessary pivot steps can be evaluated for Phase 1 and
for Phase 2 separately. °

Now let us start with the investigation of both Phases.

5.6.1 The Number Of Pivot Steps In Phase 1
The aim of Phase 1 is the solution of (EP), which has the form

maximize (v, x)

s.t. (a1, ) <1 (EP)

(@, x) < 1.

As we know from 5.5.2 we make use of the dimension-by-dimension algorithm 5.3.2.
For that reason we refer to the insights of section 5.3 and we make use of the fact that
the total number of pivot steps is simply the sum of the numbers of pivot steps of the
single stages.

The following definition will be helpful.

Definition 5.6.1 (S and si).

On the basis of the problem data A = (a, .. .,am)T, v and refering to the notation
introduced in 5.3 we define the following random variables for the stages k = 2,...,d
of the dimension-by-dimension algorithm:

1. Let Sy be the number of shadow vertices of Xy with respect to the two-dimensional
plane LH (11 (e) , Iy (v)). For k = 2 this is just the number of vertices of X,
now called S,.

2. Let sy stand for the number of performed pivot steps for the solution of (EPy) in
stage k.

Since we apply the shadow-vertex algorithm in each stage, we have
Sk S Sk

So as long as we are looking for upper bounds it is feasible to evaluate the expectation
values of Si. We remind that the feasible region X of (EPy) is defined as follows:

Xp={zeR": (i(a),z) <1,....,I (an),x) <1}. (5.5)

5We use the considerations introduced in 5.4 for an interpolation and we follow in significant parts
the procedure used in [Ver09]. For this reason one will find similar structures. But at some places
the argumentation will differ.
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The restriction vectors determining X} are the result of truncations of the original
vectors ay, . .., @,,, where the last (d — k) components have been removed. In detail
this is achieved formally by linear transformations :

1 0 0 O 0 a}
01 0 O 0 a?
I, (ai) = . .
00 1 0 --- 0 af
—.P,

For arbitrary k the projection matrix P; € R¥*? has the following structure: In the
first k& columns we find the unit matrix E; € R¥*._ The remaining (d — k) columns are
filled up with values 0. Based on that transformation and taking into regard that for
the distribution of a;

a; ~ Ny (&Z-, o Ed)
holds, we can apply Lemma 2.2.2 and conclude that I (a;) is distributed as follows
Il (a;) ~ Ni (P - @i, Py, (0 - Ey) PY).
Taking into regard that
P,.-E; P =E,

(k) ._

and using the notation @, := Il; (@;) we obtain the simplified form:

11, (a,l) ~ N (C_Lgk),02 . Ek> .
Here
_(k — 71
1) < |l(@;, b°)| < 1.

Exploiting these results in combination with the representation from (5.5) for Xj, we
can apply Corollary 5.2.1 for stage k = 2:

E[Ss] < C - (%—Hn(m)).

Here C' is an absolute constant. Since sy < S5, and based on the monotony of the
expected value we obtain

E[ss] < C - (i +n (m)> | (5.6)

o2

For stages k = 3,...,d we apply Corollary 5.2.2 and we obtain in combination with
Sk < Sk
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ol

E [s4] < O - (k—g +k° - (In m)Q) , (5.7)

Again (5 is an absolute constant. For the number of pivot steps necessary to solve
Phase 1 (explicitly)

d
s
k=2
we observe (5.6) und (5.7) and we have the estimations
d 1 d 13
E Zsk <(Ci- (F—Hn(m)) -f-CQ'Z <;+k’5' (lnm)2> .
k=2 k=3

This proves the following Lemma.

Lemma 5.6.2 (Number of necessary pivot steps in Phase 1).
The average number of pivot steps for the solution of Phase 1 under application of the
dimension-by-dimension algorithm is not greater than

C, - (% +ln(m)) +02~i (i—j + k- (lnm)z) :

Again Cy und Cy are absolute constants..

Now the Smoothed Analysis for Phase 1 is complete..

5.6.2 The Number Of Pivot Steps In Phase 2

As known from 5.5.1 we start Phase 2 at the vertex (x*,0) of the interpolation problem
(Int LP). Here * denotes the optimal solution of the unit problem (EP). In addition
we have seen that this vertex is optimal on the feasible region X;p of the interpolation
problems be in direction
(")
ot

d
v :Zyi- <1 —bN> — 1.
i=1

A = {A'...,A?} means the index set of the tight restrictions in * of (EP). The
actual otimization direction was (0, ...,0, 1)T. So the shadow-vertex algorithm uses

the projection plane
v 0
H._LH(<U+),< : ))

with
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A detailed consideration shows that the plane H depends on the perturbed input data
of (LP) since v is involved . This causes a conflict with the rigorous conditions of the
shadow-vertex-estimations in Corollary 5.2.2. But we are able to avoid and to clear
away that conflict by taking into regard that

s (2 )(7)) =2 ((5)-(V))

However H is a fixed two-dimensional plane which we use for application of the shadow-
vertex algorithm. Before continuing with the analysis, we introduce a notation and
make a remark.

Definition 5.6.3 (Sy41 und s4.1).
On the basis of the input data A = (al,...,am)T, b und v we define the following
random variables

1. Let Sqy1 be the number of shadow vertices of Xip with respect to the plane H.
2. Furthermore let sq.1 stand for the number of pivot steps carried out for Phase 2.

Remark 5.6.4.
The number s4, 1 of the pivot steps which will actually be carried out essentially equates
the number of those shadow vertices of X;p with respect to the plane H belonging to

the cone
wr((2).(2)

This observation directly delivers sg.1 < Sgi1. A second look at the cone in question
shows that it is not allowed to substitute the last component v™* in the first vector by
the value 0. So we conclude: The cone corresponding to the actual number of steps
sq+1 for solving Phase 2 is highly correlated with the restriction vectors via the role of
vT. Anyhow, as we have seen above, that correlation and dependence does not play
any role when we are investigating the upper bound Sg,;. So, if the purpose is the
derivation of the upper bound, we may ignore those difficulties and dependencies.

This remark justifies that in the following we may concentrate on the estimation of the
mean value of Sy,; of shadow vertices. We remind that the feasible region X;p of the
interpolation problems is as follows:

(a1, 1=0"),(z,t)) <1

<(a’m> 1- bm) ) (ZL', t))

<1
(0,...,0,1), (z,¢)) <1
(0,...,0,=1), (z, 1)) <0
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The last two restrictions are based on the fixed vectors (0, ..., 0, 1)T and (0,...,0, —1)T.

A precise look shows that both lie in the plane H. Hence we conclude a very useful fact.
First have a look at the orthogonal projection of X;p on the plane H. The last two
restrictions should be ignored for the moment. An example for the resulting shadow
can be found in 5.1.

After that let us take the two additional restrictions into regard. We make use of the
fact that the corresponding restriction vectors lie in the plane H. So we obtain the
slightly modified projection polygon as shown in 5.2 .

A comparison of the two representations shows that adding the two restrictions delivers
four new vertices, which are highlighted in the second representation. Besides a lot of
former vertices will become infeasible. We are not able to make precise statements about
their number. This allows to make the following general statement: With respect to
the plane H the number of shad/\ow vertices Sg11 of X;p is at most by four larger than
the number of shadow vertices Sy of

Xipo={z : ((a,1=0Y) ,(z,0)) < 1,0, (@, 1 = b™), (z,8)) < 1},

The polyhedron X;pis totally defined by unit vectors which are on their part based on
normally distributed random variables. In addition from condition ||(@;, b")|| < 1 for
¢t =1,...,m we obtain the estimation

max ([[(@, 1-5)]) <2
When we want to apply Corollary 5.2.2 then the norms of the centers of the restriction

vectors have to be one at most. In order to reach that goal, we must multiply all
(@1,1 —=b"),...,(@m, 1 —b™) by 2 . So we get for i = 1,...,m the vectors

i A
(piaq ) ~ Nd+1 ((pzaq )7 <§> ’ Ed+1) :
In the proof for Corollary 5.2.2 we had proceeded in a very similar way. There we have
recognized that the mean value for the number of shadow vertices does not change
under that scaling 6. So we can apply the Corollary and we can conclude that

E [§d+1] <Cs- ((611_741)3 2'+ (d+1)° - (In m)Q)

for an absolute constant C5. Taking into consideration that sz < Sgiq < §d+1 + 4
and by use of C; := 2% . (3 we obtain

(d+1)3

Ebﬁﬂgay( +@+1f«mmf>+4

g

So we have proven the following Lemma.

6Compare the proof to 3.2.3 in section 3.2.1.
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Figure 5.1: projection-polygon of X;p under ignorance of the restrictions for the inter-
polation variable ¢

Figure 5.2: projection-polygon of X;p with regard to the restrictions for the interpola-
tion variable ¢
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Lemma 5.6.5 (number of pivot steps in Phase 2).

For the applicaton of the shadow-vertex algorithm the solution of Phase 2 in algo-
rithmd.5.3 requires on the average not more than

C, - ((d+ 2 +(d+1)°- (lnm)2> +4

ot

pivot steps. Here Cy is an absolute constant..

5.6.3 Combination Of Results

Now we combine the two upper bounds for Phase 1 and Phase 2 in order to prove
theorem 5.1.1 from section 5.1, which reads as follows:

Theorem 5.6.6 (Smoothed analysis of algorithm 5.5.3).

Consider the linear optimization problem

mazximize (v, T)

_ _ LP
s.t. Az < b (LP)

m dimension d > Q_wz'th m > d restrictions. Furthermore we make the assumption
that max;—y._n||(@;, b")|| < 1. Then application of algorithm 5.5.3 does on the average

-----

require not more than

1 d+1)*
Const - <—+( +4)

o2 o

+ (Inm)*- (d+ 1)6> +4

pivot steps for the solution of a corresponding perturbed problem. Const is an absolute
constant.

Proof. We combine the insights from Lemma 5.6.2 as well as from Lemma 5.6.5. So we
obtain the upper bound for the average number of steps:

Cr- (é +1In (m)> +Cz-§d: (i—i R (1nm)2)

k=3

ol

+ Cy - ((d+ Dk +(d+1)°- (lnm)2) +4.
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Resorting delivers

1 k3 (d+1)3
Cl-§+02-2—+04 —

e
k=3
d
+ Cy-In(m) + Cy- Y (K- (Inm)?) + Cy - (d+1)° - (Inm)* + 4
k=3
1 d+1 d+1
< max {Cy, Cy, Cy} - (U— Zk?’) + max {Cy, Cy, Cy} - (Inm)? Zk5 +4
1 d+1)*
< max {C4, Cy, Cy} - (; + % + (nm)*- (d+ 1)6) +4
1 (d+1)* 2 6
< Const - (ﬁjLT + (Inm)” - (d+1)° | +4.
This proves the proposition. O

Now we have reached the main goal of this section. For a conclusion we summarize the
results and make some remarks.

5.7 Summary And Comments

The conception of a specific algorithm for the solution of general linear optimization
problems and the calculation of its smoothed running time were the main intentions of
this chapter.

Both aspects were motivated by the hitherto existing smoothed analysis of the Simplex
Method by Spielman and Teng [ST04] and by Vershynin [Ver09]. Both investigations
have been demonstrated in chapter 3. Spielman and Teng could derive a polynomial
smoothed running time for the algorithm under their consideration. Ignoring logarith-
mic factors their upper bound has the order of O (m®d*c=3). So this is rather a
qualitative than a quantitative result. We have also seen that Vershynin could achieve
a signifiantly decreased order by using a refined geometric analysis. Section 3.2.2 has
demonstrated, that he employs a randomized form of Phase 1 for that purpose.. For
achieving a success he can give a minimal probability. Hence he guarantees that on the
average only a constant number of repetitions is necessary. But the following points
should be kept in mind:

1. For a specific problem instance certain circumstances may enforce the algorithm

to carry out a number of repetitions of Phase 1 which is significantly greater than
the average value.
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2. Furthermore the average running time will not only be influenced by the pertur-
bation of input data but also be random decisions of the algorithm. This leads
to the drawback that for a specific problem formulation we are not able to distin-
guish the impact of the data structure from the impact of random decisions on
the running time.

3. The choice of an auxiliary vector u causes an influence of the rotation symmetry
model (which had been used for the Average-Case-Analysis [Bor87]). It is ques-
tionable if this is justified under the starting intention to replace average case
results by something else which holds for each problem (Smoothed Analysis).

All these three drawbacks have been avoided in the approach used in our investigation.
Algorithm 5.5.3 is a deterministic calculation procedure. And it solves each problem
according to an exactly prescribed principle. As a consequence, the smoothed running
time is a result of the disturbances of the input data only.
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6 Computation Time Of Phase 2 In

The Case Of Stochastic
Dependency

In this chapter we perform an empirical study of the number of pivot steps in Phase
2 of the Simplex Method under various conditions for the generation of a start vertex.
For the introduction we want to give a motivation in the background of the results
obtained in this work so far. After that we will list the fundamentals of this analysis.
And finally we shall draw the according conclusions. In addition we want to direct the
focus on some interesting observations and to try to give some plausibility-explanations
for these.

6.1 Introduction And Motivation

In chapter 5 we have dealt with the construction and analysis ot the dimension-by-
dimension algorithm for the solution of linear optimization problems. The motivation
for the study of that procedure lies in the possibility of a rigorous theoretical analysis
(and in the avoidance of randomization). But this algorithmic approach is not used
in and is not recommended for practical calculations because of its higher arithmetical
effort. This results from the dimension-wise application of the shadow-vertex algorithm
in d stages in order to get to a specific start vertex for the next stage. This is different
in the usual practical approach consisting of only two Phases. There the first Phase
has only the task to find any vertex of the polyhedron. And this is then used as start
vertex for Phase 2.

In the following we shall go away from that somehow artificial procedure and we will
focus on the classical two-Phase approach for the Simplex Method. The essential task
of Phase 1 is to clarify the question whether the problem is feasible and if it is to
calculate any vertex. Starting from that vertex we initiate a real optimization process
for finding the best resp. optimal vertex for the problem. If we plan to apply the
shadow vertex in Phase 2, we need as known an additional auxiliary objective function
for which our starting vertex for Phase 2 would be optimal. In general it is not possible
to fix such an auxiliary objective a priori, i.e. before our calculations. Instead we
must pick the according objective vector from the polar cone of the available start
vertex. The effect of that limitation is the dependency of this chosen direction from
the original restriction vectors, i.e. the data of the problem. But the theoretical results
on the (expected) numbers of shadow vertices rely on the independency of (u) from
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6 Computation Time Of Phase 2 In The Case Of Stochastic Dependency

those data. So that method used in practical applications does not admit a rigorous
theoretical analysis..

As already mentioned, we know a solution method, namely the dimension-by-dimension
method ensuring the desired stochastic independence and guaranteeing theoretical up-
per bounds. But that method is somehow circumstantial as it requires d Phases instead
of two. But the cost of avoidance of d-Phases would be the loss of stochastic indepen-
dence.

If one is very sceptical one would suspect that the stochastic dependence in the practical
method has fatal impacts on the running time resp. number of pivot steps in Phase 2.
That means that this would yield prolongations of Phase 2. Therefore we dedicate this
to the following central question:

Has the loss of guarantee for stochastic independece in practical
applications a significant increasing impact on the average number of
pivot steps in Phase 29 And do the theoretical bounds still hold although
the condition of independence is neglected?

The described fear accompanies the investigations at all times. It constitutes the start-
ing point for the subsequent investigation. For clarification of that question we will
carry out an empirical average-case-analysis. For that empirical analysis we make use
of the so-called rotation-symmetry-distribution in the sense of the definition in chap-
ter 1 for having a stochastic distribution model. ! The rotation-symmetry-model has
been valuable for the successful average-case-analysis of the Simplex Method [Bor87] of
Borgwardt. Before starting the investigation, we want to present some fundamentals
about rotation-symmetric distributions.

6.2 Rotational-Symmetric Distributions

In this section we give a short survey over the class of rotation symmetric distributions.
The information stems from [Bor87] and from [Bor07], where further interesting aspects
can be found. One of the most famous representatives of that class is the multivariate
normal or Gaussian distribution. This distribution features for a d-dimensional, real-
valued random vector U the density function

fo(w) = (\/LQ_W)CI g

If we consider two possible realizations w; and wus of those random variables, then
assuming the condition [|u,|| = ||usl| yields under insertion in the density function

Jo (u1) = fu (ug). (6.1)

!The definiton of smoothed running time from chapter 1 would not admit to study that question in
the context of a smoothed analysis.
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6.2 Rotational-Symmetric Distributions

This is the essential property characterizing rotation symmetric distributions. To sim-
plify the following considerations, we want to concentrate on those rotation symmetric
distributions, that feature a density function. 2 So we are going to call a d-dimensional
random vector U rotation-symmetrically distributed, if for any two arbitrary realiza-
tions w; and wg with ||ui|] = ||uz|| just the equality of the corresponding density
function values fy asin (6.1) holds. Based on that property we can introduce for r > 0
a so-called radial density gy (r) which is a cumulated density over all points with radius
r. Formally this means:

gv () == / for () ds = Mgy (wa (1) - for (@),

wq(r)

where for @ just ||w| = r holds. Furthermore one is able (as Borgwardt remarks) to
characterize a rotation symmetric distribution uniquely by its so-called radial distribu-
tion function. This is for 0 < r < oo just

T

Fy(r)=P[|U| <r]= /gU (r) dr.

It describes the probability that a random realization of U has a distance to the origin
of at most r.

After that look on rotation-symmetrical distributions from a very general point of view,
we are going to focus on a special class of rotation-symmetrical distributions. They
have played an important role in the average-case-analysis of convex-hull-algorithms.?
The following definition and characterization of that subclass stems from the paper
[Bor(07] of Borgwardt. That subclass is parametrized by a parameter k > —1. For the
according radial distribution function we have :

4 T
[(1—72)rri-tdr
L fir 0 <r <1,
Fi(r) = [(1—72)rrd-tr (6.2)
0
L1 fiir r > 1.
So we obtain for the corresponding radial density function:
1— 2\Kk d—ld
1( r)TTTAT o< <1,
ge(r) =4 [ =72)rri-tdr (6.3)
0
0 fir r > 1.

2For the desired empirical investigation this is no essential restriction.
3Compare the papers [Bor07], [Bor97] and [Wérll].
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Two essential points attract attention at this place. The support for that family of
distributions is in any case the unit ball €2;, and we can use the parameter x to weight
certain radii between 0 and 1 in a desired way. For x — —1 the weight lies on the
boundary of the ball. For k — oo the weight accumulates near the center of the ball
and the outer region is devaluated. There are some prominent special cases. They are
listed in the following table:

K consequence Remark
k=20 g, constant on )y uniform distribution on
Qg
k — —1 | total dominance at r =1 uniform distribution on
Wq
k — oo | total dominance at r =0 complete centralization
K = % symmetry of the distribution about r =
1
2

Table 6.1: Interesting special cases in the rotation-symmetric distribution family

For the following investigation we want to concentrate on the special case Kk — —1,
i.e. the uniform distribution on the unit sphere. This distribution can be simulated
numerically in a very efficient way. And it seems to be plausible that the insights
obtained by the way will be transferable to the whole class of distributions.

For the generation of uniform distributions on the unit sphere we would like to avoid the
use of the mentioned radial density- and distribution- function. This has the reason that
the numerical integral evaluations turn out to be computationally rather intensive and
often very instable. But we have a much simpler way to generate the simulation data.
Remember the beginning of this section, where we have got to know the multivariate
standard normal distribution as one prominent element from the class of rotationally
symmetrical distributions. There is a close relationship between this distribution and
the uniform distribution on the unit sphere. This will be clarified in the following
Lemma.

Lemma 6.2.1.
Let W be a random wvector distributed according to the multivariate standard normal
distribution in dimension d, i.e. W ~ Ny (0, Ey). Then the normalized random vector

w
U~=——
W]

is uniformly distributed on the unit sphere wy in RY.

Proof. The Lemma is a direct consequence of the definiton of the random variable U
combined with the rotation symmetry of the multivariate standard normal distribution.

O
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In view of our goal to generate uniformly distributed random vectors on wy we first
generate a d-dimensional, normally distributed random vector W. Afterwards we nor-
malize this vector to give it length 1. This discloses a further essential advantage of
our method: For the generation of one random vector W we need only d independent,
standard normally distributed random variables Wy, ..., W;. From these we are able to
calculate the random vector W := (W, ..., Wd)T. For the generation of the single val-
ues W; there are efficient numerical standard methods as for instance the Polarmethod
[MB64], which we are going to use.

In the next section we discuss in detail the algorithmic aspects of the empirical study,
which will turn out to be important.

6.3 The Algorithmic Principle Of The Investigation

The content of this section is subdivided in two main subjects. In the first part we will
explain how Phase 1 in our investigation is organized. In the second part we shall discuss
the two variants for Phase 2 and we are going to compare their efficiency. Besides we
shall develop a geometrical interpretation of the method used in Phase 1. This will at
a later point be helpful, when we try to explain and to interpret the quantiative effects
observed in our empirical studies.

6.3.1 The Phase 1 And Its Geometrical Interpretation

The following investigation is based on the classical Two-Phase-Approach 4 of the
Simplex Method for the solution of problems in the form

maximize (v, x) (EP)
s.t. Az < 1.
For A = (ay,..., am)T and v we stick to the introduced dimensions and again X will
denote the feasible region. For our problem class the origin is always feasible due to
the positive right hand sides. So the two stages have the following goals :

Phase 1 Find a vertex x, of X.?
Phase 2 Now try to optimize starting from x, in v-direction, until either an optimal
x, is available or it becomes obvious that the optimization problem cannot be

completed, because of unboundedness of the objective.

Figure 6.1 shows an example of a polyhedron given by restriction vectors all of length
1.

4Compare section 2.3.1.
5Since all right hand sides of the restrictions are positive, the standard procedure used in this section
is suited for Phase 1. Compare for instance [Bor01].
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Figure 6.1: A polyhedron defined by unit constraints

For easier notation in further considerations the following definition will be helpful.

Definition 6.3.1 (X©).
Fori=1,...,d we define the constructed feasible regions

X® ::{w : Awgl,xiZO,...,deO}.

In addition we set X @) .= X

For the start of Phase 1 we establish the property of being a vertex in an artificial way.
This is done by introduction of sign-restrictions & > 0 on the feasible region X, So
we are able to set up the feasible Tableau for our objective direction v on X directly
for starting the Simplex Method:

a; as s a, —€e1 s —€y v

—er | | | | | | |
_al —a2 PR —am el e ed —v

—€q | | | | | | |

1 1 -~ 1 0 - 00

Tableau 6.1: A potential Start-Tableau for solving a unit problem
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6.3 The Algorithmic Principle Of The Investigation

The restriction vectors —ey, ..., —ey result from the sign conditions
x>0 < —21<0,...,—z?<0.

In the first Phase we start from 0 and search for a Tableau corresponding to a feasible
vertex of X. This is achieved in d pivot steps by successive pivot steps removing those
vectors from the basis which correspond to the auxiliary restrictions. This is explained
in detail in the following algorithm.

Algorithm 6.3.2 (Phase 1/Search for a vertex of X).
Input: A und v

Initialization:

Set up the start Tableau using the original data 6.1. After that set i == 1 for the
iteration variable i and set the current iteration point on wy := 0. This is a vertex of

X,

Iteration (while i < d):

1. Check whether the vector —e; can be removed from the basis. This would corre-
spond to a slackening of the restriction —xt < 0. If this is impossible because of
unboundedness, then go to step 2. Else go to step 3.

2. Transform the restriction —x' < 0 into ' < 0. Numerically this is done by
multiplication of the corresponding Tableau-row by —1. The resulting restriction
vector e; can be removed from the basis .° After that go to step 3.

3. FExecute the according pivot step. So one moves from w; to the next iteration
point wi,1. This is feasible for X and it is a vertex of XY, The Tableau has
the structure demonstrated in 6.2.

4. Mark complemental to step 3 the Tableau-column to —e;, such that this column
will be disregarded in future selections of pivot columns. Finally set i : =1+ 1.

Output:

The point wa,q is a vertex of XY = X . Report this point resp. the corresponding
Tableau and stop.

Before proceeding, it pays to consider the role of the sign restrictions: As stated in the
algorithm, after removal of +e; from the basis the corresponding sign restriction loses
its validity and it will therefore be disregarded in future steps for the pivot selection.
This procedure means a successive extension of the feasible region in the form

61f one uses the stochastic model introduced in section 6.2 for the generation of problem instances,
then these instances satisfy the condition of nondegeneracy 2.4.1 almost surely. For that reason we
can without loss of generality assume, that no line space exists. This can only appear in the case
of degeneracy. Hence the removal of the new restriction vector e; is surely possible.
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a’l a2 ... am _el .« .. _eZ _eZJrl PR _ed v

a;, * ok * * * 0 0 *

a;, * * * * * 0 0 *

—€;y1 | k% * * * 1 0 *

—ey * * * * * 0 1 *
1 i

* * * wiJrl wiJrl 0 0 *

Tableau 6.2: Tableau-structure after removal of the ith sign restriction

XU o XO s e X@ o XD — x|

For execution of Phase 2 we can directly use the Tableau, that has been calculated by
the algorithm described above. Here is its structure:

a a, - Q| —e -+ —e; |V

aj | * x * * * *

aj, | * * * * *
1 d

¥k ek Wayq 0 Wy | K

Tableau 6.3: Tableau-Structure after the end of Phase 1

The —e;-columns should be regarded separately from the block of genuine restrictions.
Their future role is only for statistical purposes. So the Tableau has exactly the form
as mentioned in section 2.3.2.

After having discussed the algorithmic procedure in Phase 1, we profit from an attempt
to interpret what happens, geometrically. For that demonstration let the polyhedreon
from figure 6.1 serve as the starting point. The introduction of sign restrictions > 0
diminishes that to the polyhedron shown in figure 6.2. As remarked, the origin will
be a feasible vertex for that latter polyhedron. It is marked as a grey point in the
illustration.
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1,3

xl

Figure 6.2: The polyhedron diminished by the sign restrictions z*, 22, 23 > 0 from figure

6.1

Caused by the removal of —e; from the basis we walk from the origin on that edge
having just the direction e;. We stop that movement in the moment when we arrive at
an adjacent vertex. Now the loss of the first sign restriction enlarges our polyhedron
by the set of all points in the original polyhedron, whose first component is negative
while all its other components are still nonnegative. So we arrive at the configuration
illustrated in figure 6.3. The current vertex is marked as a black point.

Figure 6.3: The polyhedron diminished by the sign restrictions 2%, 2 > 0 from figure
6.1
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Remark 6.3.3.

As already taken into account in algorithm 6.3.2, it may happen that during the i-
th step the restriction z; > 0 cannot be slackened, because the according movement
direction d; is not stopped at the boundary. Then we are also unable to find a successor
vertex w,;; von X0+t The reason is that d; is an unlimited direction in X+
respectively in X. In that case we react by “Hipping” the restriction. Consequently the
successor point resp. vertex will be seeked in direction —d;. For the essential procedure
this does not make a difference.

In our example d; = e; has turned out to be a possible movement direction. Else we
had chosen the direction —d; = —e; and we had carried out the analogous movement.
The second iteration step leads to the configuration illustrated in figure 6.4. The current
iteration point is again emphasized.

Figure 6.4: The polyhedron diminished by the sign restriction 23 > 0 from figure 6.1

In the final step the temporary feasible region extends to the complete original polyhe-
dron and we can see the marked vertex of X in figure 6.5. Now we are going to start
the second Phase at that vertex.

After the study of the procedure in Phase 1 and with the knowledge of its geometrical
meaning, we come to another consideration. This will be helpful for the argumentation
in section 6.6. As known, in the first Phase an iteration sequence is constructed:

wi; ~ Wy ~ ... ™ Wqy1

This sequence leads to a vertex of the feasible X. We emphasize that there is a signifi-
cant difference between the first and the remaining (d —1) steps: In the transition from
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Figure 6.5: The polyhedron from figure 6.1 with the vertex determined in Phase 1

w1 to wy we walk from an interior point of the feasible region X to a boundary point.
This second point is located in a facet, denoted by F'. In all the subsequent steps we
will never leave that facet F'. For graphical illustration the iteration sequence in our
example is shown in figure 6.6 once more.

Figure 6.6: Iteration-process in the facet F' towards a vertex of X

The course of the iterations can even be described more precisely. Therefore have a
look at the Tableau (Tableau 6.2) for step 3 in algorithm 6.3.2. After removal of —e;
from the basis there are exactly i original restrictions tight at the current iteration
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point. Hence it is located in a (d — i)-dimensional face of X. As the facet reached in
the first step will never be left again, we can make the statement, that w;,; lies in a
(d — 7)-dimensional face of F'. Geometrically interpreted the procedure works according
to the following principle: Search starting from the current point w;, located in the face
F;, the next iteration point w; . in a face F;, 1, which bounds F; and whose dimension
is 1 less then the dimension of F;.

Having understood the functionality of Phase 1 we are well prepared for the argumen-
tation in section 6.6.

6.3.2 The Variants Of Phase 2 Under Investigation

In the previous subsection we explained the algorithmic principle of the Phase 1 method
under application. Afterwards we discussed essential properties. Based on that we
develop in this subsection two possible versions of the shadow vertex algorithm for
Phase 2. One of them is theoretically secured, and the other is a usually faster method
used in practical applications. For these two versions we calculate the empirical and
experimental results given in the following section. In the version motivated from
practice we start the second Phase directly from the vertex calculated in Phase 1,
namely w1, which resulted from application of the principle described in section 6.3.1.
Contrary to that the start of the theoretically secured Phase 2 requires an additional
correction ensuring the stochastic independence between the projection plane of the
shadow vertex algorithm and the restriction vectors of the problems. The goal of this
subsection is to present the functionality of both versions and to discuss relevant aspects
with regard to their practical realization.

Practically motivated variant for Phase 2:

After execution of the first Phase a vertex wgy1 of X and a corresponding Tableau for
the objective direction v are at hand. Emanating from that start position we want to
apply the shadow vertex algorithm for the search for an optimal point. For that reason
we need an additional auxiliary objective direction wy, for which the vertex wgy,q is
optimal (compare section 2.4.1). Suitable for that is any arbitrary vector from the
polar cone ” of wgy,;. Since we have nondegeneracy 8, exactly d restrictions are tight
at the vertex wgqy1. The corresponding vectors will be denoted by a;,, ..., a;,. Using
this notation we may for example choose for u; the vector

u,:=1-a; +...+1-a,,

We extend our Tableau of Phase 1 by one according column for the auxiliary objective
direction u,, then we obtain

"Compare Theorem 2.3.4.
8Compare assumption 2.4.1.
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a, ay, - Q| —e - —eg |vV| U
a;, * * * * * * 1
a;, | * * * * * * 1
* ke x| w! ceewd * | %

d+1 d+1

Tableau 6.4: Tableau-Structure at the beginning of the practical Phase 2

On that fundamentum we can carry out the shadow vertex algorithm in Tableau-form
(compare section 2.4.3). The number of executed pivot steps should be noted in an
additional variable.

Now we are prepared to perform Phase 2 for the optimization in direction v. So the
numerical realization is clarified. Let us formulate this procedure in an algorithmic
terminology:

Algorithm 6.3.4 (Practical variant for Phase 2).

Input: A, v as well as a vertex x, of the feasible region X

Procedure:
1. Determine the indices jy, ..., jq for the restrictions tight at xs.

2. Choose up = a;, + ...+ a;, from the polar cone at the vertex xs and start the
shadow vertex algorithm with auziliary objective w, and with the effective objective
direction v. Save in addition the number of performed pivot steps.

3. After termination or the algorithm fix the Sy, ., of totally performed pivot steps.
Here it is not essential, whether the problem was unbounded or whether it features
an optimum. Sy, . s just one less than the number of shadow vertices of X, which
belong to the cone KK (uy,v) ¢

Output: Sy, , (Number of performed pivot steps)

As already mentioned, the aim of this chapter is an investigation of the impact of a
tolerated stochastic dependency on the running time of Phase 2. So far we have not
exactly specified what is meant by stochastic dependency. Having studied the func-
tionality of the practical Phase-2-variant, we can now specify where this dependency
comes from. In order to start directly from the vertex @, using the shadow vertex
algorithm, we are forced to select the auxiliary objective direction out of the polar cone
KK (aj,,...,a;,) of that vertex. Hence u; does in fact depend on the input data of
the problem. And this holds in consequence for the projection plane LH (u;, v), too.

9This means here and in the future just the following set of shadow vertices:

{x : zvertex of X and 3z € KK (up,v), such that @ optimal on X resp. z }.
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This is needed for the execution of the shadow vertex algorithm. This fact contradicts
the conditions for the theoretical results, but it is usual in practical realizations.

In the following we want to give the details of the theoretically approved variant. Some
aspects should be taken into regard.

Theoretically safe variant for Phase 2:

Phase 1 delivers a vertex wgy.; of the feasible region X. In order to start Phase 2
from that vertex, we must select the auxiliary objective out of the polar cone of that
vertex. In our theoretically approved version we desire to avoid any potential stochastic
dependency, which may occur with that selection. Therefore we change the concept of
our algorithmic procedure. We make use or the following principle: First determine
a fixed vector u, € wy and try to find an optimal point for that direction with start
from the vertex found in Phase 1. From there we can afterwards carry out the shadow
vertex algorithm with auxiliary objective vector u, for finding the true optimum. Since
u, is now fixed and was separately chosen, ist is stochastically independent from the
problem data. So this procedure confirms the conditions for the secure variant in Phase
2. However, it remains to clarify two further questions:

1. How can we estimate the length of the path of shadow vertices between the vertex
wyyq in direction u,? Here we meet the same problems as in the practical Phase
2.

2. What should we do, if we cannot find an optimal point in direction u,, but identify
unboundedness? Here we are at the moment not ready to start the Phase 2.

The first point is not difficult at all. This comes, because the intermediate optimization
process in direction u, is only to generate the configuration which ensures the indepen-
dency of the auxiliary objective from the problem data. So it is absolutely unimportant
how many pivot steps will be carried out in that intermediate process.

For handling the second point we will develop a procedure, which is consistent with the
secure variant. Using the algorithmic principle of the practical Phase 2 we count (with
a difference of 1) the number of shadow vertices traversed in the cone KK (uy,v) .1
For that reason we are in this case mainly interested in the number of shadow vertices
traversed in the cone KK (u,,v). Before proceeding, we want to remark, that the
algorithm has the only purpose to make our investigation possible and correct. It is
not designed to solve problems in the most effective way.

Since we do not want to gain further information about the optimization process,
and since we do only want to know the number of shadow vertices resp. of pivot
steps, the following procedure works: Starting from the vertex wgy,, we first clarify the
question for the existence of a solution in direction u,. In the positive case we there
start to carry out the shadow vertex algorithm with w, in the role of the auxiliary

19Compare again step 3 in algorithm 6.3.4.
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objective vector and with optimization direction v. And we count the number of pivot
steps. In the negative case the process aborts at a vertex w, where unboundedness
becomes obvious. But this does not yet admit the conclusion that there are no shadow
vertices belonging to the cone K K (u,,v). This would be true only if for any possible
objective direction from K K (u,,v) the problem would be unbounded. But exploiting
the information available at the vertex w we are able to restrict the set of directions
from KK (u,,v), feasturing shadow vertices. Stated more precisely, we can determine
a direction uw € K K (u,,v), for which we know the following: For all possible directions
in KK (u,,u) unboundedness holds. Hence there are no shadow vertices in that region.
On the basis of that knowledge we optimize in direction . If we find an optimal
point, then we use this vertex as a starting point for the shadow vertex algorithm with
auxiliary objective w and with actual optimization direction v. By the way we count
the number of pivot steps. If in direction w unboundedness should appear again, then
we determine analogously as above a new vector @. This will afterwards be used as
we would do with w. This process can be continued until either a vertex is reached,
from which we can start the shadow vertex algorithm in optimization-direction v, or
until we get to know that there are no such shadow vertices. This principle shall be
formulated in algorithmic notation.

Algorithm 6.3.5 (Safe variant for Phase 2).

Input: A, v, u, and a vertex x, of the feasible region X

Prozedur:

1. Optimize starting from xs in direction u,. If an optimal solution x,, can be
found, go to step 3. Else unboundedness is true. Then go to step 2.

2. The optimization process has stopped at a vertex w, where unboundedness in
direction u, could be observed. One could identify an unbounded edge w+ K K (d)
with (u,, d) > 0. Consider now the objective parametrized by

Uy, + v

and try to increase A in order to achieve (u, + X -v,d) = 0. For (v,d) > 0 this
is not possible. In that case go to step 4. For (v,d) < 0 choose

(uq, d)
(v, d)

and set u, := u, + \ - v. After that go back to step 1.

3. Start the shadow vertex algorithm at the vertexr x,,. Use u, as the vector for
the auziliary objective and optimize in direction v. Save in the variable Sy, ., the
number of pivot steps carried out. STOP.

4. For all z € KK (u,,v) we observe unboundedness. In that case there are no
shadow wvertices belonging to the cone KK (u,,v). Hence there are no pivot
steps either. For that reason set Sy, », = 0. STOP.
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Output: S,, ., (number of pivot steps carried out)

Remark 6.3.6.

The parametrization of the objective function used in step 2 in the algorithm above
dates back to the introduction of the parametric Simplex variant by Gass and Saaty
[GS55]. In our context this procedure is a tool for a correction and modification of
the objective in the case of unboundedness. In addition, as we shall see, it delivers
information about the practical realization.

Now we want to clarify, how this algorithm can be realized numerically. But before we
shall discuss two justified objections.

1. Is it ensured that the procedure always terminates?

2. This algorithm is not very efficient for saving computation time.

For the second point we explain the following: It is not necessary to start the optimiza-
tion path again from the start vertex z, after modification of the objective in step 2.
Instead one can proceed directly at the vertex w. The algorithmic formulation above
is made this way only for simplification of understanding and implementation.

The second point is clarified with the help of the next Lemma. It ensures the finiteness
of the procedure.

Lemma 6.3.7.
Algorithm 6.3.5 terminates after finitely many steps in all cases of nondegenerate prob-
lems.

Proof. To begin with we state the following: The finiteness of the procedure could only
be in danger by an endless repetition of the following process:

(i) In step 1 we observe unboundedness.
(ii) For that reason we determine a correction factor A in step 2.
(ili) We go back to the first step with the modified auxiliary objective direction u,+Av.

But this situation cannot happen, as the following consideration shows. Look at the
hypothetical “infinite cycle” in detail. So let in step 1 the problem be unbounded in
direction u,. This will be observed (compare step 2) at the vertex w detecting an
emanating unbounded edge w + KK (d) featuring (u,,d) > 0. For that reason we
rotate the new objective vector u, + Av by choice of

(o, d)
(v,d)

so far in direction v, that (u, + A\v,d) = 0 holds. By the way at the vertex w the edge
w + K K (d) will not be regarded during the pivot choice for optimization in direction
u, + Av . Any further corrections of the objective vector will not change that fact.
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Afterwards we start the optimization process with the modified objective u, + A\v again
from x;. If we had an “endless cycle” then we would obtain unboundedness again, either
at w or at another vertex.

Let us discuss that configuration more generally and assume nondegeneracy. Now
any vertex & of X has exactly d emanating edges. Hence for that vertex at most d
corrections can be carried out. Afterwards the algorithm cannot stop at x because of
unboundedness anymore.

Summarizing our considerations, we realize: At any one of the finitely many vertices
it is not possible to make more than d corrections. This allows only finitely many
modifications of the objective. An “infinite cycle”, as assumed, cannot occur for that
reason. This ensures the finiteness. O

Finally we care about the practical realization.

Numerical Realization of Algorithm 6.3.5:

To setup the Tableau in step 1 and in step 3 the following consideration is helpful: As
known from 2.3.2; in the statistical part of the Tableau reflects the matrix (—Ax")7,
where A denotes the temporary actual basis index set. If we want to record a further
vector z € R? in the Tableau, then we have to calculate (AL")?z from the Tableau
data. So these values can be inserted in an additional column.

In combination with the considerations from the practical applied variant we are able
obtain the Tableau by means of a simple matrix-vector-multiplication:

a; as a,, | —e; —eq | u, | u
a;, * * * * * * 1
a;, * * * * * * 1
1 d
x % * T, x§ | %
Tableau 6.5: Tableau at the start of step 1
So we have a start for step 1. In the same way the Tableau
a; Qs a,, | —€1 —€4 | UV | U,y
ap, | *  * * * x|k | %
ag, | * * * * x| x| %
1 d
x % * | x,, Ty | k| x

Tableau 6.6: Tableau for starting step 3
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for step 3 can be calculated. The execution of the shadow vertex algorithm runs as
described in section 2.4.3.

One important point should still be clarified. How can the correction factor A in step 2
using the data available at the vertex w be determined? Therefore we need information
from the actual Tableau. In addition we determine the representation of the objective
direction v in terms of the actual basis. For simplification these data are already
integrated in the following Tableau and the column for @-Spalte is removed, as it is
unneccessary.

a; a an | —€1 —€4 | U
T 1
a; | * * * d; &
T k
a;, | * * * d, &
T d
a;, | * * * d, 19
% e x | w! e | % |

Tableau 6.7: Useful information in the statistical part of the Tableau

In that Tableau the rows of the statistical part have been denoted by d7 , ..., dg. This
reflects the following fact (which will be useful in the following): On the basis of our
condition of nondegeneracy we know that at the vertex w exactly those restrictions are
tight that belong to the index set A = {ji,...,j4}. So we can set up the basis matrix
Ap = (aj,, .. .,a,jd)T. Using these information we can describe the edge-directions
emanating from w as follows:

di:—Aglei, 221,,d

Here we have just the rows in the statistical part ot the Tableau. Irrespective of a
potential scaling factor we can find for the edge w + KK (d) the direction in the
Tableau. That edge had been detected in the second step of algorithm 6.3.5 disclosing
the unboundedness. Assume that this is dj. In addition we are going to denote the
basis representations in the u,- and in the v-column by & and v. That means:

u, = AL¢ and v=Alv.
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Hence it is possible to calculate the correction factor A in the following way:

So it suffices to know the two entries in the u,- and in the v-column.

In this section we have presented the two algorithms, which form the basis of the
empirical investigation. Moreover we have dealt with further aspects as the termination
after a finite number of pivot steps and with the numerical realization.

6.4 Empirical Results For The Number Of Pivot Steps

In this section we present the empirical results for the running time of the algorithms
introduced in section 6.3.2. So we will be able to clarify, whether the fear formulated in
section 6.1, that the non-analyzed practical variant could significantly suffer from the
neglection of independency in comparison to the stochastically and theoretically safe
variant. First we list some technical details.

1. Average numbers of pivot steps were obtained in the course of £ = 50000 randomly
generated problem instances.

2. The data obtained that way are separated according to different values of the
dimensions d and presented in distinct graphics for each dimension. For a fixed
value of d always the number of restrictions m varies and this is illustrated in the
diagrams.

3. The stochastic principle for generation of the restriction vectors aq,...,a,, as
well of the objective vector v is the unit distribution on the unit sphere wy. This
had been presented in section 6.2.

4. For the auxiliary objective vector u we always choose the fixed vector e;. This
specific choice has due to rotation symmetry no impact on the results.
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Figure 6.7: Average number of pivot steps of the Phase-2-variants for dimension 3

So we can start presenting results. In figure 6.7 we find the average numbers of pivot
steps for d = 3. It is obvious that for that dimension the average numbers under
the theoretically secure and for the practically applied variant are almost identical.
Under magnification one recognizes the the values for the applied variant sometimes
are greater and sometimes smaller than for the secure variant. Consequently we regard
both alternative variants as equivalent with respect to their arithmetical effort. So for
this dimension d = 3 the stochastic dependency of w from the restriction vectors has
no significant impact on the running time of the shadow vertex algorithm in Phase 2.

Besides we make an interesting observation also valid for the results in higher dimen-
sions. For the average number of pivot steps as illustrated the curve starts with a
somehow steeper ascent and it becomes more and more flat for higher values of m.
This is true for both variants. If one compares the first diagram with that in figure
6.8 for dimension 4, then a slightly different behaviour becomes apparent. In principle
the behaviour is identical for d = 4, nevertheless there is one difference: The curve
increases at the beginning for small values of m somehow steeper than for d = 3, but it
flattens stronger in the sequel. A look at the results for the other dimension in (figure
6.9 up to figure 6.24) shows this effect becomes even stronger for increasing d: For small
numbers of restrictions m the average number of pivbot steps increases steeply, i.e. a
slight variation of m has a strong impact on the average number of steps. This effect
weakens for higher restriction numbers more and more.
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We go back to the individual results. For d = 4,...,8, look at figures 6.8 up to 6.12.
It is affirmed that the fear of longer running times caused by stochastic dependency
is baseless. Still the calculated average number are very similar for both variants.
A precise examination shows that the applied variant is often even faster than the
theoretically secure variant.
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Figure 6.8: Average number of pivot steps of the Phase-2-variants for dimension 4
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Figure 6.9: Average number of pivot steps of the Phase-2-variants for dimension 5
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Figure 6.10: Average number of pivot steps of the Phase-2-variants for dimension 6
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Figure 6.11: Average number of pivot steps of the Phase-2-variants for dimension 7
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Figure 6.12: Average number of pivot steps of the Phase-2-variants for dimension 8
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The presented data suggest that the fear of an impact of the nonobservance of stochastic
independence, that would increase the average number of pivot steps, is not justified.
In fact, there are slight differences in the charts of both variants, but these are not at
all significant. Anymore we observe even the effect, that the practical method mostly
performs a little bit better (less pivot steps) than the theoretically secure method.
Of course the question for the reason for these little deviations arises. A very naive
approach would expect significant differences or some kind of accordance. From a
practical point of view it is interesting to know, why both variants differ in their average
behaviour at all. The choice of the auxiliary objective vector from the polar cone of
the start vertex may be a fatal intervention in the concept of the rotation symmetry
model. But is there a systematic compensation through the practical choice? The
little quantitative advantage of the practical method is not in the focus of our interest.
However we do not like to ignore it and we want to know why it appears and to do
something like a cause analysis. This is done in section 6.6.

For the dimensions d =9, ..., 13, whose diagrams are given in figures 6.13 till 6.17 the
observed trend sustains. The average running times of the practical methods still do
not show any increasing impact of the loss of independence. This is all we can do to
dispel the fear of a bad impact on the running time of Phase 2, as long as our arguments
are only empirical.
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Figure 6.13: Average number of pivot steps of the Phase-2-variants for dimension 9
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Figure 6.16: Average number of pivot steps of the Phase-2-variants for dimension 12
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Figure 6.17: Average number of pivot steps of the Phase-2-variants for dimension 13

As mentioned several times before, the practical method mostly exhibits a slight ad-
vance in the running time. This effect is notably stronger when the number of restric-
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tions m is significantly greater than the corresponding value d for the dimension. For
moderate restriction numbers, - i.e. m slightly larger than d - the comparison turns
out in the contrary way. Here the advantage of shorter running times lies on the side of
the theoretically secure variant. As an example regard the magnified extract in figure
6.17. Of course it would be nice to know the reason for that effect as well. In this case
it is rather simple and plausible. So we want to explain it directly.

Roughly spoken the reason lies in the concept of the algorithms 6.3.4 and 6.3.5, which
have been used to calculate the results. In the stochastically safe variant we cannot
use an available vertex found in Phase 1 directly, in order to start the optimization
process in direction v. Instead we first try to reach the optimal point for the direction
of e;. Whether this will be successful or whether this ends up with the cognition
of unboundedness, is unknown at the beginning. In the latter case it is impossible
to determine the number of shadow vertices coresponding to the cone KK (ey,v) by
measuring the Simplex Path from the optimal point to e; to the final point for direction
of v. However we want to make a statement about the number of shadow vertices also
in this case generated by our random data-generator. So we manage this with an
alternative procedure: We try to rotate the auxiliary objective vector e; in direction
v as far as we reach a direction that does not feature the unboundedness. By the way
we reach a (first) shadow vertex, from which we can start the optimization process
and measure the length of the path. We remark that it may occur, as incorporated in
algorithm 6.3.5, that “all” directions from the cone K K (e;, v) feature unboundedness.
On that basis we can conclude that there are no shadow vertices corresponding to
that cone. For that reason one cannot carry out pivot steps. Besides that extremal
case (more often) the case may occur that the entry in Phase 2 becomes possible
after a specific rotation from direction of e; in direction of v. Then only a reduced
“partial rotation” in direction v, which should for plausible reasons lead due to rotation
symmetry. Both mentioned configurations cause a decrement of the mean value. And
these cases can only occur in unbounded feasible regions. Here it is important to know
that a problem setting according to our stochastic model of rotation symmetry has a
probability for unboundednes of

p(d,m) = 27"+ dZ (m N 1)

k=0

according to an important result in a paper of Wendel [Wen62]. This probability
decreases very fast to increasing values of m. And this is the reason why the two
mentioned more difficult- configurations have an impact only for moderate restriction
numbers, i.e. m still in the size of d.

For further clarification we look at the practical method in more detail and compare it
again with the safe method. In contrast to the theoretical variant the practical method
will not cause configurations that urge to rotate the auxiliary objective direction before
being able to start Phase 2. The generated problem instances do all have some vertices
because of m > d and of the validity of the condition of nondegeneracy 2.4.1. The first
Phase has lead us to one of those vertices. From there we can start Phase 2 using w,
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as auxiliary objective. Hence the number of shadow vertices resp. the number of pivot
steps is defined always over the total cone KK (up, v). A decrement according to an
initial correction of w, in direction v is not necessary and not possible (in contrast to
the safe method).

Combinig both considerations leads to the conclusion that the system of counting under
use does privilege the safe variant for moderate restriction numbers with respect to d,
the dimension, i.e. m in the size of d. So the results on the effort will for that variant be
somehow understating for moderate dimension relations. So this explanation matches
the observations.

Let us come back to the presentation of the results about empirical running times.
The remaining figures for dimensions d = 14,...,20 confirm all our hitherto existing
observations. We suppose that this is a well-grounded empirical basis for the follow-
ing conclusion. The tolerated stochastic dependency between the vector w;, and the
remaining problem-data in the practical method for Phase 2 has no significant and no
unfavorable impact on the computation time. This will be stated in a formulation of
an empirically motivated result in the following section.
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6.5 Consequences Of The Calculated Results

Here we formulate an empirically motivated statement on the average case complexity
even for the practical method. We rely on the calculated and in the previous section
presented results about empirical numbers of pivot steps.

Conjecture 6.5.1 (Average Case).
Consider a linear optimization problem of the form

mazximize (v, x)
s.t. Ax <1

with A = (al,...,am)T e R™ v e R und m > d > 2. If the restriction vec-
tors aq,...,a, and the objective vector v are distributed according to the Rotation-
Symmetry-Model, then the shadow-vertex-algorithm requires on the average less than

Const - mi-1 -d* +d
pivot steps for the solution. Here C'onst is an absolute constant.

Reasoning for the Conjecture. The d pivot steps fall upon Phase 1 for the removal of
the auxiliary restrictions. The second summand results from the execution of Phase
2 according to the practical method. Since the empirical results do not exhibit a
significantly worse behaviour than in the case of the theoretically safe variant, we
may use the theoretical estimation for the average number of shadow vertices from
[Bor99]. O

6.6 Complimentary Considerations On The
Computation Time Of Phase 2

In this section we will investigate the deviations between the computation time in the
practical method and in the theoretically safe method. Our aim is to find the reasons
for these (little) differences. As already observed and stated, the practical algorithm
requires (in particular when m is much larger than d) less pivot steps in Phase 2 then
the safe variant does. An obvious cause is not at hand, so we deal with the details
of that phenomenon. Since the main target of this chapter is already met -the crucial
question was answered in 6.4 -, we have separated the following argumentation about
the deviation from the presentation of the similarity of the results.

In a very naive approach to the comparison of the two versions one would assume that
one of two cases applies: Either the stochastic dependence has no relevant impact and
the running times are almost identical. Or the behaviour should differ significantly.
But it is surprising that there is a slight deviation always in one direction (better for
the practical variant). Let us discuss the reasons.
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Now the geometrical interpretation of our procedure in Phase 1 as given in section 6.3.1
becomes important and enlightening.

One conjecture about the deviation could possibly lead to numerical aspects. For
the simulations we have used an implementation of the restriction-oriented Simplex
Method based on Tableaus. The limited precision of the numerical realization may
cause numerical effects and instabilities, which could influence our calculations . But the
realization of both variants is numerically equivalent and based on the same numerical
concept. For that reason it seems to be comprehensible that all effects based on such
numerical issues would be reflected in both variants in the same way. The absolute
number of steps may be influenced. But the impact should be neutralized under the
comparison. .

In fact another reason seems to be relevant. This reason or effect will be called
Greenland-Effect. We shall explain the choice of this name later. As several times
stated before, we start the safe variant from the optimal vertex for the direction of
e;'l. So e; is used in the role of the auxiliary objective vector. In contrast to that we
cannot give such a global statement about the direction of the auxiliary objective uy,
as used for the execution of the practical method in Phase 2. So it pays to generate
a certain number of problem instances and to study the generated auxiliary objective
directions wuy, in particular their distribution. For that purpose we present the figures
6.25 and 6.26. Here we see the direction of auxiliary objective directions w, as gener-
ated in 5000 problem instances. Both figures base on d = 3, so the difference of both is
causes by the value of m. Our direction of view is always orthogonal to the xs-x3-plane,
i.e. alongside —e;. So the vector ey, which always serves as auxiliary objective for the
safe variant of Phase 2, is always exactly in the middle of the graphic. What we call
Greenland-effect, consists of the following characteristics, which can be recognized in
both figures.

1. The auxiliary objective directions u;, go under a certain variance.
2. They cumulate near the north-pole e;.

3. The distribution of the points u; is not symmetrical about the north-pole, but
systematically unidirectional with a concentration on the first octant.

As we shall see, these three characteristics are mainly caused by the kind how Phase 1
worked. This has been the motivation to discuss the basic geometrical interpretation
in detail in section 6.3.1. Now let us give explanations.

Characteristic 1:

Phase 1 iterates as known in the first step in direction of e; (only in some unbounded
cases one uses —e; and we should disregard these cases here) until a facet of the
feasible region is reached. After that one makes corrections according to the remaining
coordinate directions, till one reaches one of the vertices. For the upcoming execution

HHere we deal mainly with m >> d, so we disregard the appearance of unboundedness.
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€3

Figure 6.25: 5000 realized vectors u, for starting the practical Phase 2 in case of m =
100 and d = 3

€3

Figure 6.26: 5000 realized vectors u, for starting the practical Phase 2 in case of m =
500 and d = 3
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of the practical Phase 2 one chooses the required auxiliary objective direction u, as the
barycenter of the polar cone of the vertex at hand. It is obvious that this procedure
reflects the specification of the respective problem instance. So it is clear that we
observe a certain variation in the large set of experiments.

Characteristic 2:

Also the second property can be explained by the systematic of Phase 1. As mentioned
before the first iteration in direction e; determines and fixes a facet F'. All remaining
iterations remain in that facet, until a vertex of that facet is reached. After arrival
we choose an auxiliary objective direction wu;, from the barycenter of the corresponding
polar cone. So we have a strong dependence of the final vertex on the direction e; via
the facet F', which contains that vertex.!? Besides the vertex, also the orientation of
u,, is influenced by the first iteration direction e;. This fact delivers a fundamental
explanation for the cumulation ot the vectors u, near e;.

Characteristic 3:

We have seen that the first step in Phase 1 explains the second characteristic. Moreover
the remaining iterations 2, ..., d are responsible for the systematically one-sided devia-
tions of the vectors w, relative to the pole e;. During these iterations (roughly spoken)
some corrections according to the coordinate directions e, ..., e; will be carried out
till a vertex is reached. This follows two principles: On one side the fixed sequence
of corrections causes that the deviation with respect to the direction e; is by trend
stronger than with respect to e;;1. On the other side the i-th step prefers a movement
in the (positive) direction e; against a movement in the (negative) direction —e;. This
comes from the specific functionality of Phase 1. If one combines both principles (which
hold for arbitrary dimensions), then one obtains in case of d = 3 and under rotation-
symmetry the concentration of the auxiliary objective directions u; in the first octant
as shown in figures 6.25 and 6.26.

Now having listed and introduced the three essential properties characterizing the
Greenland-effect, we want to explain the nomenclature. For understanding this it is
worthwhile to look again at figures 6.25 and 6.26. These show exemplarily the variation
of the auxiliary objective vectors u; in the prctical variant of Phase 2. Irrespective of
the size of the distribution region we perceive the slightly shifted position of that region
relative to the north pole. With some imagination we observe a certain similarity to
the size, the form of Greenland and its relative position to the north pole. In con-
trast to the theoretical variant, which will always have the start at the north pole with
the auxiliary objective, the practical method starts in our imagination “somewhere in
Greenland”. For this reason we call the observed variation Greenland-effect. Moreove
we want to state the conjecture, that this disturbance of the ideal location at the north
pole, is responsible for the deviation of the average numbers between both variants.

So far we have discussed the theoretical reasons for the occurrence of the Greenland-
effect in Phase 1. Complementary we want to illustrate its origination graphically at

12The facet F' was determined just by the walk from the origin in direction e;.
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an example. In section 6.3.1 we have introduced the Phase 1 under use and we have
illustrated it at such an example. Let us get back to that example. The vertex found in
that example and the corresponding feasible region are presented in figure 6.27. There
are two highlighte vertices. Look at that one which lies more in the right and higher.
This vertex is used for the entry in the practical Phase 2 and we choose the barycenter
u,, from the corresponding polar cone as auxiliary objective vector. Moreover the facet
F', which has been reached in the first step of Phase 1, is drawn in dashed lines. As
we have seen, it is a significant property of Phase 1 that the final vertex always will
be located on that facet F'. In addition we recognize the second vertex, which is
highlighted more in the left and lower. This vertex belongs to the same facet. And this
is the optimal point for the objective direction e;. As we know this is the point where
the stochastically safe Phase 2 under use of the fixed auxiliary objective e; will start.

Figure 6.27: Result of Phase 1 versus optimum with respect to e;

As we see in our example, the two vertices lie close to each other; resp. the angle
between both vertices is rather small. '* On the basis of the rotation symmetry model
the following fact essentially holds: The angle between a vertex (interpreted as a vector)
and any direction from its polar cone is rather small. Consequently the angle between
e, and wuy should be small as well.

13Here we interpret the vertices as vectors emanating from the origin.
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For both variants of Phase 2 we obtain shadow vertex pathes with slightly differing and
shifted start positions. This is illustrated in figure 6.28. For better comprehension we
have rotated the graphic in a way, such that the vector e; is directed upwards.

Figure 6.28: llustration of start positions for the two variants of Phase 2

Repeating these observations for a very large number of concrete problem instances
yields the behaviour that is shown in figure 6.25 and figure 6.26. We detect a systematic
one-sided deviation u, from e;. This is what we call Greenland-Effect.

At this point we want to mention an additional item, that can be recognizes in both
figures. But we have not paid attention to this so far. It is obvious that for m = 100
the variation or deviation is rather strong and that for m = 500 the variatian decreases
significantly. Under a detailed consideration we should not be surprised by that effect.
This is caused by the fact that for increasing values of m the polyhedron will have in
trend more vertices and more facets. And that gives the surface a much finer structure.
For that reason the facet hit in Phase 1 will in trend be smaller as well. The remaining
correction steps, which do not leave the facet, can consequently lead to very small
deviations only.

Further one can observe (compare in particular figure 6.25), that large deviations appear
more seldom and that the set of points shown in the figure exhibits som structure. In
particular the latter observation reveals that it would be extremely difficult to find a
theoretical distribution model for the deviation in question. Hence it will be nearly
impossible to describe the Greenland-effect theoretically and rigorously.

In the course of the introduction of the Greenland-effect we have dealt with the slightly
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reduced running time of the practical Phase 2 in a rather general way. Let us now
have a closer look at some aspects. There are some factors having an impact on the
deviation-behaviour. Besides the concept of the Phase 1 under use, for example the
precise choice of the auxiliary objective vector should be considered. If we look at this
choice separately, then we recognize that already the choice of the barycenter from the
polar cone for u,, yields a reduction of the average number of pivot steps. This is clarified
in figures 6.29, 6.30 and 6.31, whose empirirical results are based on a modification of
the theoretical variant.

To clarify the question for the impact of the barycentralization we discuss the theoretical
Phase 2 once more and we modify it slightly. Still we try to reach the optimal point for
e; and then - -in the positive case — we start the optimization process in direction v. But
this time we do not use e; as auxiliary objective vector for the shadow vertex algorithm.
Instead — analogously to the practical method — we replace it by the barycenter in the
polar cone of the vertex. By the way we produce a similar configuration as we know from
the practically applied procedure. For the possible case of unboundedness in direction
e, where we first have to make corrections with the help of v, we do not perform that
barycentralization at the start vertex. And the result is: This slight modification yields
slightly reduced numbers of pivot steps. In figures 6.29, 6.30 and 6.31 we see results
for dimensions d = 6, 11, 18.
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Figure 6.29: Average step-numbers of the safe Phase 2 and the variant with artificial
barycentralizatiion of the auxiliary objective direction in dimension 6
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Figure 6.30: Average step-numbers of the safe Phase 2 and the variant with artificial
barycentralizatiion of the auxiliary objective direction in dimension 11
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Figure 6.31: Average step-numbers of the safe Phase 2 and the variant with artificial
barycentralizatiion of the auxiliary objective direction in dimension 18
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So we comprehend that even the isolated modification of barycentralization in the choice
of the auxiliary objective yields a reduction of the average number of pivot steps.

From a quantitative point of view the question is justified, which portion of the de-
viation between the theoretically safe and the practical method can be explained by
barycentralization. An empirical answer is given in the graphics of figures 6.32, 6.33
and 6.34. Supplementary to those three illustrations we see for d = 6,11, 18 how the
average numbers of the secure method and of the variant with artificial barycentral-
ization exceed the values for the practical method in Phase 2. More precisely: For the
calculated numbers of pivot steps the following differences are illustrated graphically:

safe Phase 2 — practical Phase 2

artificial barycentral Phase 2 — practical Phase 2.

For better clarity the “Zero-Line” is highlighted. A curve progression below that line
indicates smaller average numbers than in the practical Phase 2 and a progression above
indicates greater numbers in comparison with the practical behaviour. The strikingly
ragged course of the curves is due to the refinement of the scaling (in comparison with
the graphics seen so far).
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Figure 6.32: Differences between average step-numbers in dimension 6
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Figure 6.33: Difference between the average step-numbers in dimension 11
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Figure 6.34: Difference between the average step-numbers in dimension 18
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In all three plots we see that for small restriction numbers the curves run below the
Zero-Line. This is, as explained in section 6.4, caused by the fact that for moderate
relations between m and d the practical method in Phase 2 delivers a bit larger values
than the theoretical variant. This perception holds as well for the barycentered form and
for the safe method. For d = 6 the values for the average numbers of the barycentered
Phase 2 are almost on zero-level. Hence we suspect that barycentralization can almost
alone be hold responsible for reduced numbers of pivot steps in dimension 6. In case
of d = 11 the zero-level will not be reached by barycentralization completely, but we
see a drastic approximation. Here a great portion of the difference can be explained by
that way. Similar is the situation with dimension 18.

As mentioned, one may recognize that for higher dimensions also other effects contribute
to the reduction of the running time. But for the remaining difference we cannot fix the
direct causes. These reasons lie, as we suppose, more deeply in the concept of Phase 1
and in the hereby produced Greenland-effect. Finally we want to discuss a property of
the first Phase. And we want to contrast it with the situation in the secure case. This
comparison, which is not really founded by concrete facts, however gives a plausible
reason for the yet unexplained deviation.

In general, without explicitly regarding the possibility of unboundedness, we find the
following situation for both variants:

Safe Phase 2:

Before we start the actual Phase 2 one determines the optimal point for direction e;.
Starting from there one starts the optimization process in objective direction v. Here
it is essential to remember that both vectors e; and v are stochastically independent
of the restriction vectors, that define the feasibility region. For this reason we are not
able to make statements about the surface structure of the polyhedron in the region
close to the optimal point in direction eq, i.e. the start vertex.

In contrast to that the practical Phase 2 orients itself somehow at the surface structure
of the actual and specific feasible regions. This will now be elaborated.

Practical Phase 2:

As a dominating factor influencing the running time of the Phase 2 is —as seen before
— the barycentralization of the auxiliary objective vector. At this point we want to
mention further properties. These are not directly induced by the concept of Phase 2,
but they are caused by the principles of Phase 1. For further observations we will in
particular look at these properties of Phases 1 as we have already done before in section
6.3.1.

Let us concentrate on the first step in Phase 1: Starting from the origin we walk in
direction e, until we reach the boundary of the feasible region X, i.e. we reach a facet
F'. This iteration step corresponds to the naive attempt to obtain an optimal point on
X with respect to the objective direction e;. From that we can conclude that the hit
facet F' has a tendency to a larger extension, as it has been hit. For the sequel in the
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first Phase we want to emphasize two facts:

e In the remaining (d— 1) iteration steps the facet will never be left. The vertex x,
which will be handed over to Phase 2, and from which the optimization process
in direction v is started, is also an element of F.

e As stated for the first step, the faces reached in the subsequent iterations (in
according lower dimension) have a similar tendency to a larger extension. This
suggests that the case, where we arrive at a vertex incident to a relatively long
edge of I, seems to have a strong preference.

When we optimize starting from that vertex in direction v, then we can — as discussed
in the following — often profit from that configuration. To understand that, we consider
three alternative cases for the Simplex Path emanating from x,:

Fall 1: It is completely contained in the facet F'.
Fall 2: The path runs partially on the facet F'.

Fall 3: In the first step F' is left and never visited again.

For further considerations we suppose that the first two cases are mainly caused by
the location of the start vertex s on F'. For the start vertex of the Simplex Path in
the secure variant we cannot make such a position statement . So the first two cases
do not occur systematically, but this happens rather randomly. In total their portion
should be somehow smaller. Stated in other words: The cases 1 and 2 appear less often
in the theoretically secure variant. Therefore the third case will have a higher weight
in the secure method in contrast to the practical method of Phase 2, where its weight
is smaller.

For case 3 we do not have additional information and for that reason we suggest that
we meet the average number of steps. For the first two cases we formulate theses
or assumptions. The first thesis summarizes our hitherto considerations. The second
thesis delivers in addition one new aspect. This will be justified afterwards. And then
we will think about the profit of both theses in connection with cases 1 and 2.

Thesis I:

In the first step of Phase 1 we choose the direction ey, for moving to a facet F' of the
feasible region. With regard to the structure of the polyhedron that direction may be seen
as random. Therefore, i.e. because the specific facet is hit, it must have a tendency
to large extension (otherwise the chance of being hit would have been small). Along
movements in F it is possible to traverse large distances on the surface of the basic
polyhedron X. And F has a tendency to cover a greater portion of the surface of X
than other facets do.

Thesis II:

14We assume its existence without loss of generality.
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For movements in the facet F' we can expect a somehow reduced computational effort
i comparison with the general situation.

Before we discuss the consequences, we want to specify the reasons for that reduced
effort. That means we want to justify the second thesis. As long as we remain on
the facet F', the corresponding restriction vector a; stays in the basis and it is never
replaced. In technical words: We move in the hyperplane corresponding the ¢-th re-
striction (a;, ) = 1, i.e. in a (d — 1)-dimensional affine space. Moreover the i-th
restriction — as it determines that space — never loses its role as a basis restriction. The
movement in facet [’ shall for that reason be interpreted a movement for the solution
of a problem in dimension (d — 1) with (m — 1) restrictions. The consequence is that
for the distance covered in facet F' the number of pivot steps should be a bit less than
in the general situation.

These Theses deliver together with the two yet undiscussed cases the following insight:
For cases 1 and 2 we know, that the optimization process runs at least partially on
the facet F'. The significance of that information is that on this partial path in F' a
large distance on the surface of X can be traversed in rather few pivot steps. Since
both cases should occur more often for the practical Phase 2, this variant profits from
the given situation to a larger extent than the theoretical secure variant does. This
argument makes a further reduction of the number of pivots plausible in addition to
the previously mentioned reduction by barycentralization.

It cannot be excluded, that there are still other characteristics of the Phase 1 under
use have an impact on the average number of pivot steps in the practical Phase 2. But
since none of these properties can be proven rigorously and since we suppose that we
have discovered the main geometrical reasons, we want to finish the discussion at this
point.

The aim of this section was to work out the reasons, why the practical variant in Phase
2 slightly outperforms the secure variant in Phase 2.

6.7 Summary

In this last chapter we have dealt with the question, whether the application of the
shadow vertex algorithm causes a significantly larger computational effort, if the used
twodimensional plane is not chosen independently from the data of the linear optimiza-
tion problem. The clarification of this question concerns in particular the application
of the shadow vertex algorithm in Phase 2. A choice of the auxiliary objective di-
rection for the start of Phase 2 from the polar cone of the discovered vertex, as it is
usual in practical applications, yields an interdepedency between projection plane and
problem data. Hence the very moderate theoretical results for the running time cannot
be proven rigorously. Being extremely sceptical, one would fear a significantly higher
effort.
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6.7 Summary

This complication and this fear have been settled by an empirical average-case-analysis.
For the random generation of our problem instances we made use of the rotation-
symmetry-model. After the presentation of the algorithmic principles we have reported
on the measured results and have illustrated them in many diagrams. This assured us
that the tolerated dependency of start and data does not deteriorate the computation
time on the average.

In addition to that positive insight we could even observe that the practical Phase 2
runs a little bit faster than the theoretically secured method. This effect was not the
goal of our investigation, but it is an interesting observation. We have detected some
impact factors which are responsible for that effect. It may be possible to clarify these
effects to a larger extent even from a quantitative point of view. But this should be
done in future investigations.
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7 Final Remarks

Now we are at the end of this work. It pays to summarize once more what we have
achieved in the previous chapters and to list the questions that are still open.

After the introduction of the subject and after presenting the necessary fundamentals
we have demonstrated how the hitherto existing smoothed analysis investigations of
the Simplex Method by Spielman and Teng and by Vershynin worked in chapter 3.
Spielman and Teng investigated a randomized variant of the Simplex Method, which is
capable to solve problems in the form

maximize (v, x)
st. (a;,x) <V

(A, ) <™.

If one disregards logarithmic factors, then the upper bound for the smoothed running
time is of order O (m®d*¢~3°). So the result of Spielman und Teng is rather of a
qualitative than of a quantitative nature. In contrast to that Vershynin can make some
improvements by modifying the analysis and the algorithm under consideration for
solving such problems. So he achieves an upper bound of order

O (max {d’(Inm)*, d°(Ind)*, d*°c~*}).

! For the derivation of that result he also employs a randomized variant of the Simplex
Method. For a single execution of that Simplex Method he can only give a positive
probability that the problem will be solved. Else the attempt must be repeated.

In contrast to that we have employed the dimension-by-dimension algorithm. And
for that version of the Simplex Method we could calculate and bound its smoothed
running time based on a smoothed analysis. Using the terminology of Vershynin our
upper bound for the smoothed running time is (roughly spoken) of order

O (max {d°(lnm)*, d*c™*}).

Since we have investigated a similar algorithmic principle as Vershynin did, and since
we base our analysis on his upper bound for the number of shadow vertices, it is worth
while to compare the obtained upper bounds. It strikes that the term d°(In d)?* does not
appear in the bound derived in our work. This results from the fact that in contrast to

!This formula is from [Ver06].
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Vershynin’s approach we do not generate d artificial and additional restrictions. This
had been done in Vershynin’s paper to construct an artificial vertex of the modified
feasible region, from which the optimization process could be started. The comparison
of the two remaining terms shows that in our result the power of d is by 1 higher.
The plausible reason for that is that in the application of the dimension-by-dimension
algorithm we have to run through d stages instead of the usual 2. And this factor can
consequently be found in the result on the number of pivot steps.

So we can state that we have achieved a smoothed anaysis result on the running time
of a deterministic Simplex variant. In order to derive that goal it was necessary to
estimate the expectation value for the number of vertices of twodimensional polyhedra.
This has been done in chapter 4.

In addition we have in chapter 6 dealt with the question, what is the impact on the
expected running time in Phase 2, if the first Phase is not constructed in a way that
ensures the stochastic independence between the projection plane in the shadow vertex
algorithm and the restriction vectors. Since this obviously cannot be clarified through
a theoretical analysis, we have studied this empirically by a huge number of numerical
experiments. These experiments confirmed the plausible conjecture (at least empiri-
cally) that the average number of pivot steps for solving optimization problems of the
form

maximize (v,x)
s.t. (a,z) <1

(apm,z) <1
under the conditions of the rotation symmetry model is bounded from above by
Const - mi-1 - d* + d.

Again this is another example of the mathematical experience, that things may be true,
even if they are still unproven.

Now the question arises, whether there are still other deterministic and even more
efficient versions of the Simplex Method, that permit an average case analysis and a
smoothed analysis. Still there is a lot to do.
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